Full metadata record

DC Field Value Language
dc.contributor.authorKang, Unhyeon-
dc.contributor.authorLee, Jaesang-
dc.contributor.authorOh, Seungmin-
dc.contributor.authorSong, Hanchan-
dc.contributor.authorPark, Jongkil-
dc.contributor.authorKim, Jaewook-
dc.contributor.authorPark, Seongsik-
dc.contributor.authorJang, Hyun Jae-
dc.contributor.authorKim, Sangbum-
dc.contributor.authorYi, Su-in-
dc.contributor.authorKumar, Suhas-
dc.contributor.authorLee, Suyoun-
dc.date.accessioned2026-01-13T07:00:32Z-
dc.date.available2026-01-13T07:00:32Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153983-
dc.description.abstractOver the past decade, dendrites of neurons, which were previously thought to perform only information pooling and networking, have now been shown to express complex temporal dynamics, Boolean-like logic, arithmetic, signal discrimination, and edge detection. Mimicking this rich functionality could offer a powerful primitive for neuromorphic computing. Here, using Ovonic threshold switching in Sb–Te-doped GeSe, we demonstrate a single two-terminal component capable of self-sustained dynamics and universal Boolean logic in addition to XOR operations (which is traditionally thought to require a network of active components). We then employed logic-driven dynamics to detect and estimate the gradients of edges in images. The Ovonic switch exhibits properties of a half adder and a full adder in addition to discriminative logic accommodating inhibitory and excitatory signals. We show that this simple computational primitive offers a highly improved energy efficiency. As such, this work paves the path for potentially emulating dendrites for efficient postdigital neuromorphic computing.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleOvonic Switches Enable Energy-Efficient Dendrite-like Computing-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.5c04348-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Letters-
dc.citation.titleNano Letters-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusMEMRISTORS-
dc.subject.keywordAuthorneuromorphic engineering-
dc.subject.keywordAuthorOvonic threshold switch-
dc.subject.keywordAuthordendrite-like computing-
dc.subject.keywordAuthorBoolean logic operation-
dc.subject.keywordAuthorimage processing-
dc.subject.keywordAuthorenergy-efficient computing-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE