Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Park, Cheolwoo | - |
| dc.contributor.author | Kwak, Hyelim | - |
| dc.contributor.author | Koh, Tae Sik | - |
| dc.contributor.author | Sohn, Yurim | - |
| dc.contributor.author | Park, Hyunwoong | - |
| dc.contributor.author | Gu, Geun Ho | - |
| dc.contributor.author | Moon, Gun-hee | - |
| dc.contributor.author | Kim, Wooyul | - |
| dc.date.accessioned | 2026-01-13T07:00:36Z | - |
| dc.date.available | 2026-01-13T07:00:36Z | - |
| dc.date.created | 2026-01-12 | - |
| dc.date.issued | 2025-12 | - |
| dc.identifier.issn | 1433-7851 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153984 | - |
| dc.description.abstract | Ammonia oxidation reaction (AOR) offers a promising carbon-free hydrogen production pathway under ambient conditions, yet practical implementation faces critical challenges from catalyst deactivation and competing side reactions in aqueous systems. We present an electrolyte-engineered approach to photoelectrochemical (PEC) AOR that enables both enhanced hydrogen production and reversible catalyst regeneration. By employing a non-aqueous acetonitrile electrolyte at the BiVO4 photoanode, we suppress competing oxygen evolution and NOx poisoning, achieving a 6.9-fold higher hydrogen yield than aqueous systems. Spectroscopic and electrochemical analyses reveal that catalyst deactivation in water is not permanent but dynamically reversible upon re-exposure to nonaqueous environment, emphasizing the solvent-governed interfacial behavior. This electrolyte-engineering approach proves broadly applicable across metal oxide photoanodes (BiVO4, WO3, alpha-Fe2O3), establishing a universal design principle for PEC AOR systems. Our findings redefine the role of electrolyte composition in governing interfacial pathways and provide a practical framework for developing high-efficiency ammonia-to-hydrogen conversion platforms with enhanced durability and flexibility. | - |
| dc.language | English | - |
| dc.publisher | John Wiley & Sons Ltd. | - |
| dc.title | Electrolyte-Engineered Photoelectrochemical Ammonia Oxidation Enabling Sustainable Hydrogen Production via Catalyst Regeneration | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1002/anie.202522662 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | Angewandte Chemie International Edition | - |
| dc.citation.title | Angewandte Chemie International Edition | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.scopusid | 2-s2.0-105024716148 | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.type.docType | Article; Early Access | - |
| dc.subject.keywordPlus | TOTAL-ENERGY CALCULATIONS | - |
| dc.subject.keywordPlus | REDUCTION | - |
| dc.subject.keywordPlus | LIQUID | - |
| dc.subject.keywordPlus | CO | - |
| dc.subject.keywordPlus | ACETONITRILE | - |
| dc.subject.keywordPlus | POTENTIALS | - |
| dc.subject.keywordPlus | PHOTOANODE | - |
| dc.subject.keywordPlus | HYDRAZINE | - |
| dc.subject.keywordPlus | EFFICIENT | - |
| dc.subject.keywordPlus | SPECTRUM | - |
| dc.subject.keywordAuthor | Electrolyte Engineering | - |
| dc.subject.keywordAuthor | Ammonia oxidation | - |
| dc.subject.keywordAuthor | Deactivation | - |
| dc.subject.keywordAuthor | Operando Spectroelectrochemistry | - |
| dc.subject.keywordAuthor | Regeneration | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.