Full metadata record

DC Field Value Language
dc.contributor.authorPark, Cheolwoo-
dc.contributor.authorKwak, Hyelim-
dc.contributor.authorKoh, Tae Sik-
dc.contributor.authorSohn, Yurim-
dc.contributor.authorPark, Hyunwoong-
dc.contributor.authorGu, Geun Ho-
dc.contributor.authorMoon, Gun-hee-
dc.contributor.authorKim, Wooyul-
dc.date.accessioned2026-01-13T07:00:36Z-
dc.date.available2026-01-13T07:00:36Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.issn1433-7851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153984-
dc.description.abstractAmmonia oxidation reaction (AOR) offers a promising carbon-free hydrogen production pathway under ambient conditions, yet practical implementation faces critical challenges from catalyst deactivation and competing side reactions in aqueous systems. We present an electrolyte-engineered approach to photoelectrochemical (PEC) AOR that enables both enhanced hydrogen production and reversible catalyst regeneration. By employing a non-aqueous acetonitrile electrolyte at the BiVO4 photoanode, we suppress competing oxygen evolution and NOx poisoning, achieving a 6.9-fold higher hydrogen yield than aqueous systems. Spectroscopic and electrochemical analyses reveal that catalyst deactivation in water is not permanent but dynamically reversible upon re-exposure to nonaqueous environment, emphasizing the solvent-governed interfacial behavior. This electrolyte-engineering approach proves broadly applicable across metal oxide photoanodes (BiVO4, WO3, alpha-Fe2O3), establishing a universal design principle for PEC AOR systems. Our findings redefine the role of electrolyte composition in governing interfacial pathways and provide a practical framework for developing high-efficiency ammonia-to-hydrogen conversion platforms with enhanced durability and flexibility.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleElectrolyte-Engineered Photoelectrochemical Ammonia Oxidation Enabling Sustainable Hydrogen Production via Catalyst Regeneration-
dc.typeArticle-
dc.identifier.doi10.1002/anie.202522662-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAngewandte Chemie International Edition-
dc.citation.titleAngewandte Chemie International Edition-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105024716148-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusLIQUID-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusACETONITRILE-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusPHOTOANODE-
dc.subject.keywordPlusHYDRAZINE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusSPECTRUM-
dc.subject.keywordAuthorElectrolyte Engineering-
dc.subject.keywordAuthorAmmonia oxidation-
dc.subject.keywordAuthorDeactivation-
dc.subject.keywordAuthorOperando Spectroelectrochemistry-
dc.subject.keywordAuthorRegeneration-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE