Full metadata record

DC Field Value Language
dc.contributor.authorJeong, Jaegyu-
dc.contributor.authorJang, Bogeun-
dc.contributor.authorLee, Yeonhee-
dc.contributor.authorJang, Yunjung-
dc.contributor.authorHong, Jongill-
dc.date.accessioned2026-01-13T07:30:05Z-
dc.date.available2026-01-13T07:30:05Z-
dc.date.created2026-01-12-
dc.date.issued2026-03-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153986-
dc.description.abstractLow-energy hydrogen-ion irradiation provides a non-destructive, precise route to tailor materials by modifying bulk and interfacial structures, enabling the conversion of paramagnetic oxides to ferromagnetic metals with minimal damage. We apply this approach to CoO/Pd multilayers, achieving reduction to Co/Pd while elucidating the mechanism. Deuterium is employed to isolate hydrogen-specific effects. The saturation magnetization increases with acceleration energy, indicating a progressive CoO → Co transformation driven by oxygen-vacancy-mediated out-diffusion. Depth-resolved chemical profiling, compared with simulations of defect production, reveals an energy-dependent crossover: at lower energies, dissociation of OH species supplies oxygen that diffuses out; at higher energies, direct oxygen removal dominates. X-ray reflectivity shows that smoother, more uniform interfaces promote oxygen out-diffusion and thereby accelerate reduction. Together, these results establish sub-keV hydrogen-ion irradiation as a controllable, non-destructive tool for nanoscale physicochemical phase control and for coupled tuning of bulk and interface states. Beyond the CoO/Pd system, the ability to program magnetic properties within a single heterostructure by energy modulation highlights opportunities for spintronic thin films and device-relevant surface engineering.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titlePhysicochemical reduction of CoO to metallic Co by non-destructive, low-energy hydrogen-ion irradiation-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2025.165610-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.723-
dc.citation.titleApplied Surface Science-
dc.citation.volume723-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001648871900001-
dc.identifier.scopusid2-s2.0-105025189944-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusANISOTROPY-
dc.subject.keywordAuthorLow-energy proton irradiation-
dc.subject.keywordAuthorPhysicochemical reduction-
dc.subject.keywordAuthorCo/Pd multilayer-
dc.subject.keywordAuthorOxygen diffusion-
dc.subject.keywordAuthorFerromagnetism-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE