Full metadata record

DC Field Value Language
dc.contributor.authorHam, Baknoon-
dc.contributor.authorJung, Je Hyeong-
dc.contributor.authorJung, Sang Hoon-
dc.contributor.authorKirk, Matthew F.-
dc.contributor.authorKwon, Man Jae-
dc.date.accessioned2026-01-15T07:30:08Z-
dc.date.available2026-01-15T07:30:08Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.issn0301-4797-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154002-
dc.description.abstractRhizosphere bacterial communities play a pivotal role in nutrient cycling, plant productivity, and soil ecosystem resilience. Understanding their response to precipitation variability is critical for predicting soil function under climate change, where droughts and heavy rainfall are becoming more frequent. Here, we investigated how precipitation influences rhizobacterial diversity and composition using a combination of multi-site field surveys and controlled greenhouse experiments with Aster koraiensis. Across three sites with contrasting climatic and soil conditions, rhizobacterial communities differed primarily according to soil physicochemical properties, while precipitation exerted additional effects on community structure. Greenhouse experiments with soils from all sites confirmed that reduced watering decreased bacterial alpha-diversity, whereas increased watering enhanced both microbial diversity and plant growth. Precipitation also altered nutrient dynamics, with higher NO3 under watered treatments and greater uptake under plant presence. In particular, drought conditions enriched plant growth-promoting bacteria, suggesting functional resilience under water stress. Together, these findings demonstrate that precipitation regulates not only rhizobacterial composition but also the functional groups that sustain soil fertility and plant growth, highlighting the ecological significance of precipitation variability under climate change.-
dc.languageEnglish-
dc.publisherAcademic Press-
dc.titleEffects of precipitation on rhizobacterial communities during plant growth: field and greenhouse experiments-
dc.typeArticle-
dc.identifier.doi10.1016/j.jenvman.2025.128200-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Environmental Management, v.396-
dc.citation.titleJournal of Environmental Management-
dc.citation.volume396-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001634887000001-
dc.identifier.scopusid2-s2.0-105023288001-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusMICROBIAL COMMUNITIES-
dc.subject.keywordPlusSOIL-MOISTURE-
dc.subject.keywordPlusGEN. NOV.-
dc.subject.keywordPlusMICROORGANISMS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusLIFE-
dc.subject.keywordPlusDRY-
dc.subject.keywordPlusMINERALIZATION-
dc.subject.keywordPlusPREDICTOR-
dc.subject.keywordPlusDIVERSITY-
dc.subject.keywordAuthorRhizosphere-
dc.subject.keywordAuthorPlant growth-
dc.subject.keywordAuthorRhizobacterial community-
dc.subject.keywordAuthorClimatic condition-
dc.subject.keywordAuthorSoil physicochemistry-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE