Full metadata record

DC Field Value Language
dc.contributor.authorKim, Yurim-
dc.contributor.authorKim, Young-Min-
dc.date.accessioned2026-01-15T07:30:13Z-
dc.date.available2026-01-15T07:30:13Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154003-
dc.description.abstractTissue regeneration requires a precisely coordinated cascade of biological events-including stem cell homing, adhesion, proliferation, and differentiation-within a supportive and dynamic microenvironment. While numerous biomaterials have been designed to modulate individual regenerative processes, there is a need for a single, clinically viable platform that can synchronously modulate multiple regenerative events. Here, the study presents a strategically engineered injectable hydrogel that recapitulates this cascade by coordinating stem cell recruitment, matrix integration, and subsequent cellular development within a single localized system. The hydrogel is composed of amphiphilic, temperature-responsive poly(organophosphazenes) (P) conjugated with polyethyleneimine (PP), enabling the co-loading of laminin and stromal cell-derived factor 1-alpha (SDF-1 alpha) through ionic and hydrophobic interactions. The PP hydrogel exhibits thermosensitive sol-gel transition, sustained SDF-1 alpha release, and prolonged laminin retention. In vitro migration, adhesion, and proliferation assays confirm that the hydrogel enhanced stem cell recruitment and integration into the matrix. In a hindlimb ischemia mouse model, local hydrogel administration improves perfusion recovery and promotes robust angiogenesis. Together, these findings suggest that the hydrogel can coordinate several regenerative processes within a localized environment, supporting improved tissue repair in the studied model.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleA Bioinstructive Injectable Hydrogel for Enhancing Intrinsic Regeneration through Cell Recruitment and Training-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202514549-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science-
dc.citation.titleAdvanced Science-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001644857100001-
dc.identifier.scopusid2-s2.0-105025659982-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusMESENCHYMAL STEM-CELLS-
dc.subject.keywordPlusEXTRACELLULAR-MATRIX-
dc.subject.keywordPlusGROWTH-FACTORS-
dc.subject.keywordPlusFIBROSIS-
dc.subject.keywordPlusBIOMATERIALS-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusSTRATEGIES-
dc.subject.keywordPlusDELIVERY-
dc.subject.keywordPlusINJURY-
dc.subject.keywordAuthorin situ tissue regeneration-
dc.subject.keywordAuthorinjectable hydrogel-
dc.subject.keywordAuthorintrinsic regeneration-
dc.subject.keywordAuthorstem cell recruitment-
dc.subject.keywordAuthorstem cell training-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE