Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Chelin-
dc.contributor.authorYoo, Yiseul-
dc.contributor.authorKwon, Eunji-
dc.contributor.authorGong, Sang Hyuk-
dc.contributor.authorKim, Mingony-
dc.contributor.authorKim, Sang-Ok-
dc.contributor.authorKim, Hyung-Seok-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorJung, Yoon Seok-
dc.contributor.authorYu, Seungho-
dc.date.accessioned2026-01-15T08:00:05Z-
dc.date.available2026-01-15T08:00:05Z-
dc.date.created2026-01-12-
dc.date.issued2026-01-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154004-
dc.description.abstractFluorinated halide solid electrolytes (FHSEs) enable integration with high-voltage layered oxides in all-solid-state sodium-ion batteries (ASSSIBs). Here, we demonstrate high-voltage ASSSIBs by pairing a fluorine-substituted UCl3-type chloride solid electrolyte, Na0.6Ta0.2La0.8Cl3.7F0.3, with a P2-type Na0.8Li0.1Ni0.2Mn0.7O2 cathode. The ASSSIB achieves reversible oxygen redox up to 4.6 V and delivers 132 mAh g–1 with long-term cycling stability, surpassing the performance of liquid electrolytes and nonfluorinated halide counterparts. Electrochemical and structural analyses reveal that, in liquid-electrolyte cells, oxygen redox above 4.2 V becomes irreversible due to solvent oxidation and surface-layer formation, while phase transitions further degrade structural reversibility. In contrast, the FHSE preserves the P2 framework and stabilizes oxygen-redox activity, enabling higher capacity and long-term cycling stability. Supported by integrated theoretical calculations, electrochemical analyses, and advanced characterizations, this work presents a viable strategy for advancing high-voltage ASSSIBs. Overall, FHSEs enable stabilized oxygen redox above 4.2 V and realize durable, high-energy ASSSIBs.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleFluorinated Halide Solid Electrolytes for High-Voltage All-Solid-State Sodium-Ion Batteries Enabling Reversible Oxygen Redox-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.5c03248-
dc.description.journalClass3-
dc.identifier.bibliographicCitationACS Energy Letters, v.11, no.1, pp.616 - 624-
dc.citation.titleACS Energy Letters-
dc.citation.volume11-
dc.citation.number1-
dc.citation.startPage616-
dc.citation.endPage624-
dc.description.isOpenAccessN-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusSUBSTITUTION-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE