Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyelim-
dc.contributor.authorPark, Chai Won-
dc.contributor.authorKim, Jisun-
dc.contributor.authorKim, Seong-Eun-
dc.contributor.authorAhn, June Hong-
dc.contributor.authorSeong, Je Kyung-
dc.contributor.authorLee, Wonhwa-
dc.contributor.authorCho, Seung-Woo-
dc.contributor.authorKim, Hong Nam-
dc.date.accessioned2026-01-15T08:00:17Z-
dc.date.available2026-01-15T08:00:17Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154007-
dc.description.abstractPost-infectious pulmonary fibrosis remains difficult to prevent due to limited mechanistic understanding and the lack of human-relevant models. We engineered an immune-integrated lung-on-a-chip incorporating endothelial cells, fibroblasts, and macrophages to dissect early fibrotic signaling. Intravascular exposure to thymocyte selection-associated high mobility group box protein (TOX), a T cell–derived factor elevated after severe infection, impaired endothelial barrier function, upregulated intercellular adhesion molecule-1 (ICAM-1), and, through macrophages, induced fibroblast activation with increased α-smooth muscle actin (α-SMA), fibronectin, and extracellular matrix (ECM) remodeling. Pre-treatment with a receptor for advanced glycation end products (RAGE)-blocking antibody preserved barrier integrity and suppressed macrophage activation, fibroblast expansion, and collagen bundling. Similar protective effects were observed in a mouse model of TOX-induced fibrosis, where RAGE blockade improved survival and reduced collagen deposition. Analysis of profibrotic mediators revealed a conserved TOX–RAGE–macrophage signature across the chip model, mouse lungs, and patient bronchoalveolar lavage fluid (BALF) samples. These results identify TOX–RAGE signaling as a driver of post-infectious fibrotic remodeling and establish RAGE blockade as a potential preventive strategy.-
dc.languageEnglish-
dc.publisherSpringer | Korea Nano Technology Research Society-
dc.titleEngineering an immune-integrated lung-on-a-chip to reveal TOX–RAGE axis–driven fibrosis and RAGE blockade as a therapeutic strategy-
dc.typeArticle-
dc.identifier.doi10.1186/s40580-025-00529-7-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Convergence, v.12, no.1-
dc.citation.titleNano Convergence-
dc.citation.volume12-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.wosid001642642600001-
dc.identifier.scopusid2-s2.0-105025132862-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordAuthorLung-on-a-chip-
dc.subject.keywordAuthorFibrosis-
dc.subject.keywordAuthorMacrophage-
dc.subject.keywordAuthorTOX-
dc.subject.keywordAuthorRAGE-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE