Full metadata record

DC Field Value Language
dc.contributor.authorKang, Bobin-
dc.contributor.authorHa, Thanh Duy Cam-
dc.contributor.authorBarakat, Alaelddin Michailidis-
dc.contributor.authorLee, Gyumin-
dc.contributor.authorLee, Heehyeon-
dc.contributor.authorOh, Youngtak-
dc.contributor.authorKim, Hyunjeong-
dc.contributor.authorChung, In-
dc.contributor.authorYoon, Seok Min-
dc.contributor.authorKim, Myung-gil-
dc.date.accessioned2026-01-15T08:00:34Z-
dc.date.available2026-01-15T08:00:34Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.issn1433-7851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154011-
dc.description.abstractThe metal cation linker in metathesis-derived chalcogels critically governs structural evolution, porosity, and resultant physicochemical properties. However, most studies have emphasized atomic-scale functionality of metal linker within chalcogel network, with limited attention to local structural transformation and even long-range ordering. This work demonstrates the unprecedented role of cerium ions in directing the formation of a sustainable 2D crystalline Ce–Sn–S (CTS) chalcogel. The crystalline framework arises from coordination transformation of SnS4 tetrahedra within Sn2S6 dimers into distorted Sn3S4 broken-cube clusters, yielding a [Sn3S7]n2n− layered geometry. Cerium oxidation states, particularly Ce3+ enrichment, further stabilize the crystalline network via a templating effect and enhance electrocatalytic activity. The optimized CTS-5 chalcogel exhibits superior oxygen evolution reaction performance, including a low overpotential of 300 mV at 10 mA cm−2, the lowest Tafel slope of 80 mV dec−1, and stable operation for 50 h at 10 mA cm−2. The crystalline CTS chalcogel represents a new class of aerogel materials, where robust 2D crystallinity persists even under high cation loading, enabling functional tunability without compromising network integrity.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleAll-Scale Structural Optimization of Resiliently Crystalline Na–Ce–Sn–S Chalcogel for Efficient Oxygen Evolution Reaction Electrocatalyst-
dc.typeArticle-
dc.identifier.doi10.1002/anie.202523034-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAngewandte Chemie International Edition-
dc.citation.titleAngewandte Chemie International Edition-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105024765312-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusTHIOSTANNATE-
dc.subject.keywordPlusCS+-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusAEROGELS-
dc.subject.keywordAuthorCrystalline aerogels-
dc.subject.keywordAuthorElectrocatalysis-
dc.subject.keywordAuthorMetal-chalcogenide aerogels-
dc.subject.keywordAuthorOxygen evolution reaction (OER)-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE