Full metadata record

DC Field Value Language
dc.contributor.authorThyashan, Navod-
dc.contributor.authorManawasinghe, Janeesha-
dc.contributor.authorGu, Chaoming-
dc.contributor.authorKhatri, Santosh-
dc.contributor.authorNelson, Christopher-
dc.contributor.authorSanli, Merve Emecen-
dc.contributor.authorGray, Steven J.-
dc.contributor.authorLee, Sangyoup-
dc.contributor.authorDutta, Prashanta-
dc.contributor.authorAlexandrakis, George-
dc.contributor.authorKim, Min Jun-
dc.date.accessioned2026-01-15T09:30:03Z-
dc.date.available2026-01-15T09:30:03Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154020-
dc.description.abstractAdeno-associated virus (AAV) vectors are excellent gene-delivery carriers in gene therapy; however, improperly packaged capsids produced during manufacturing can reduce potency and raise safety concerns. We introduce a machine-learning-assisted, low-cost, label-free nanopore sensing platform with single-particle resolution to enhance AAV quality control. Using solid-state nanopore (SSN) devices on SixNy membranes, we optimized in vitro conditions for AAV9 detection and classification. We observed pH-dependent capsid denaturation under strong alkaline conditions. Buffer-specific, selective translocation of emptyAAV9 capsids from cargo-loaded samples enabled clear discrimination and revealed potential avenues for in situ filtration. We also observed distinct translocation behaviors between vectors encapsulating single-stranded DNA and those encapsulating self-complementary DNA. In addition, unsupervised clustering algorithms demonstrated high accuracy in distinguishing capsids with truncated genomes from those with full genomes, further facilitating AAV production quality. These findings support practical avenues for AAV filtration and analysis, providing a basis for label-free, high-throughput, precise, and scalable quality control in AAV vector manufacturing.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleMechanisms of Adeno-Associated Virus Serotype 9 Vector Characterization and Quality Control through Solid-State Nanopores-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.5c16533-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Nano-
dc.citation.titleACS Nano-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusDNA-
dc.subject.keywordPlusTRANSLOCATION-
dc.subject.keywordAuthorgene delivery vectors-
dc.subject.keywordAuthorbuffer-specificfiltration-
dc.subject.keywordAuthorsolid-state nanopores-
dc.subject.keywordAuthorchemically tunedpores-
dc.subject.keywordAuthorsingle-molecule sensing-
dc.subject.keywordAuthorunsupervised learning-
dc.subject.keywordAuthorAAV vector qualitycontrol-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE