Full metadata record

DC Field Value Language
dc.contributor.authorPark, Nam-Yung-
dc.contributor.authorPark, Geon-Tae-
dc.contributor.authorRyu, Ji-Hyun-
dc.contributor.authorPark, Seong-Eun-
dc.contributor.authorKim, Jae-Ho-
dc.contributor.authorLee, Seung-Yong-
dc.contributor.authorChoi, Junhyeok-
dc.contributor.authorLee, Yong Min-
dc.contributor.authorKim, Min Gyu-
dc.contributor.authorLee, Heebeom-
dc.contributor.authorCline, Joseph P.-
dc.contributor.authorLiu, Zhao-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorSun, Yang-Kook-
dc.date.accessioned2026-01-15T09:30:23Z-
dc.date.available2026-01-15T09:30:23Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.issn1748-3387-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154025-
dc.description.abstractNi-rich layered oxide positive electrode active materials are promising for high-energy non-aqueous lithium-based batteries, but their poor structural stability limits their high-power applications. Here, to address this issue, we propose a two-step doping strategy for the synthesis of Ni-rich positive electrode active materials. This involves an initial lithiation of the hydroxide precursor at an intermediate temperature, followed by cooling, dopant mixing and high-temperature calcination. This approach yields positive electrode active materials with nanoscale primary particles, thereby improving mechanical stability and suppressing intergranular cracking. Moreover, the material prepared via a two-step doping strategy exhibits a layered–rocksalt nanostructured multiphase, which reversibly transforms into a layered-spinel nanostructured multiphase upon cell charging, facilitating lithium-ion diffusion. As a result, the nanostructured Nb-doped Ni-rich multiphase positive electrode active material enables improved high-rate performance when tested in both Li metal coin cell and Li-ion pouch cell configurations, also applying electric vertical take-off and landing testing protocols.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleNanostructured niobium-doped nickel-rich multiphase positive electrode active material for high-power lithium-based batteries-
dc.typeArticle-
dc.identifier.doi10.1038/s41565-025-02092-y-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Nanotechnology-
dc.citation.titleNature Nanotechnology-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105025719143-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusNI-RICH-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusCAPACITY-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE