Full metadata record

DC Field Value Language
dc.contributor.authorPark, Junbeom-
dc.contributor.authorPark, Jaemin-
dc.contributor.authorSeok, Jun Ho-
dc.contributor.authorByun, Ji Soo-
dc.contributor.authorOh, Cheoulwoo-
dc.contributor.authorKim, Eung-Dab-
dc.contributor.authorKo, Young-Jin-
dc.contributor.authorKim, Youngeun-
dc.contributor.authorSim, Gawon-
dc.contributor.authorKim, Min Jae-
dc.contributor.authorBang, Hyeon-Seok-
dc.contributor.authorPark, Ho Seok-
dc.contributor.authorYoo, Chun-Jae-
dc.contributor.authorLee, Sang Uck-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorKim, Kwang Ho-
dc.contributor.authorYang, Wooseok-
dc.date.accessioned2026-01-15T10:00:25Z-
dc.date.available2026-01-15T10:00:25Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154048-
dc.description.abstractThe sluggish kinetics of the oxygen reduction reaction (ORR) remain a major bottleneck for energy conversion systems such as fuel cells and metal–air batteries. Here, the synthesis of molybdenum single-atom catalysts (Mo SACs) derived from abundant and low-cost Kraft lignin is reported. By tuning nitrogen incorporation during carbonization, agglomerated Mo carbide clusters are progressively converted into atomically dispersed Mo active centers anchored on N-doped carbon. Extensive spectroscopic analyses confirm this structural evolution, while density functional theory calculations reveal that the optimized Mo coordination environment downshifts the d-band center, enabling the balanced adsorption of oxygen intermediates and thereby improving the intrinsic ORR activity. Electrochemical measurements demonstrate enhanced half-wave potential, near-four-electron transfer pathway, superior selectivity, and excellent durability, with ≈85% current retention over 50 h. Beyond performance, the use of minimally processed Kraft lignin underscores both the economic and environmental advantages of this approach, offering a scalable and sustainable pathway to practical ORR electrocatalysts.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleModulation of Electronic Structure in Kraft Lignin-Derived Mo Single-Atom Catalysts for Optimized Electrochemical Oxygen Reduction-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202522273-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science-
dc.citation.titleAdvanced Science-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105024689773-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusDOPED CARBON-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordAuthorbiomass-
dc.subject.keywordAuthorfuel cell-
dc.subject.keywordAuthorlignin-derived catalyst-
dc.subject.keywordAuthoroxygen reduction reaction-
dc.subject.keywordAuthoratomic dispersion-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE