Full metadata record

DC Field Value Language
dc.contributor.authorMehmood, Anas-
dc.contributor.authorHashmi, Muhammad Mubeen-
dc.contributor.authorDilpazir, Sobia-
dc.contributor.authorYaqub, Azra-
dc.contributor.authorRizvi, Syed Bilal Hasan-
dc.contributor.authorAbbas, Saleem-
dc.contributor.authorHa, Heung Yong-
dc.contributor.authorMehboob, Sheeraz-
dc.date.accessioned2026-01-26T06:00:05Z-
dc.date.available2026-01-26T06:00:05Z-
dc.date.created2026-01-12-
dc.date.issued2026-02-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154077-
dc.description.abstractThe performance of all-vanadium redox flow batteries (VRFBs) is hindered by limited kinetics of vanadium redox couples, particularly V3+/V2+, at graphite felt (GF) electrodes. This study is focused on bismuth-based metal-organic frameworks (Bi-MOF) with nanotube morphology and MOF-derived Bi2O3 fused nanowires as novel and efficient electrocatalysts for V3+/V2+ redox reactions. In-situ growth of Bi2O3 nanowires from Bi-MOFs provided improved hydrophilicity and higher defect sites for efficient inter-particle electron transfer, thus enhancing its electrochemical activity towards V3+/V2+ redox reactions. The VRFB single cells utilizing Bi-MOF-GF and Bi2O3-GF as anode materials achieved energy efficiency of 81 and 82 %, respectively, outperforming cell employing pristine GF (P-GF) and thermally treated (HT-GF), which only achieved 64 % and 78 %, respectively at current density of 100 mA cm−2. Moreover, even at a higher current density of 300 mA cm−2, Bi-MOF-GF and Bi2O3-GF cells delivered average discharge capacities of 8 and 12 Ah L−1 respectively, while cells with P-GF and HT-GF electrodes failed to perform beyond 100 and 200 mA cm−2, respectively. The cycling stability tests over 100 charge/discharge cycles of Bi2O3-GF and Bi-MOF-GF cells at 150 mA cm−2 demonstrated capacity retentions of 86 and 69 %, respectively, with negligible decay in energy efficiency throughout the cycling duration.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleGraphite felt anchored with fused nanowires from bismuth metal-organic framework as negative electrode for all-vanadium redox flow batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2025.239003-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Power Sources, v.665-
dc.citation.titleJournal of Power Sources-
dc.citation.volume665-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001640531500002-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOSITIVE ELECTRODE-
dc.subject.keywordPlusCARBON FELT-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordAuthorMetal-organic frameworks (MOFs)-
dc.subject.keywordAuthorAll-vanadium redox flow battery (VRFB)-
dc.subject.keywordAuthorBi-MOF nanotubes-
dc.subject.keywordAuthorGraphite felt (GF)-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE