Full metadata record

DC Field Value Language
dc.contributor.authorEom, Subin-
dc.contributor.authorJung, Moo Young-
dc.contributor.authorPark, Jihye-
dc.contributor.authorSon, Ji-Won-
dc.contributor.authorAhn, JeongHyeon-
dc.contributor.authorKim, Sung Won-
dc.contributor.authorYun, Yong Ju-
dc.contributor.authorJun, Yongseok-
dc.date.accessioned2026-01-26T06:00:12Z-
dc.date.available2026-01-26T06:00:12Z-
dc.date.created2026-01-12-
dc.date.issued2026-01-
dc.identifier.issn2352-152X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154078-
dc.description.abstractClimate change urgently necessitates the development of sustainable energy solutions alongside efficient energy storage devices. Among these, supercapacitors have emerged as promising candidates due to their fast charge/discharge capabilities and exceptional long-term cycle stability. In this study, NiCoFe-layered double hydroxide (NiCoFe-LDH) was successfully synthesized via electrodeposition onto copper nanowires (Cu NWs), which were prepared through electrochemical anodization followed by thermal reduction. The optimal Fe ratio in NiCoFe-LDH@Cu NW was determined through various electrochemical tests, with the 3-NiCoFe-LDH@Cu NW (Ni:Co:Fe = 5:3:3) exhibiting superior electrochemical performance, achieving a capacity of 130.20 μAh cm−2 at a current density of 3.0 mA cm−2. To evaluate practical applicability, an asymmetric supercapacitor (ASC) was fabricated using 3-NiCoFe-LDH@Cu NW as the positive electrode and 1-MXene@CuO NW as the negative electrode. The ASC demonstrated excellent energy storage performance, delivering an energy density of 1.69 mWh cm−2 at a power density of 19.27 mW cm−2, outperforming recently reported devices. Furthermore, the ASC retained 80.7 % of its initial capacity after 8000 cycles at 10 mA cm−2, with a coulombic efficiency of 102.9 %, highlighting its remarkable stability and efficiency.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleEnhanced electronic structure and electrochemical active area of ternary NiCoFe-LDH and Cu nanowire composites for superior energy storage-
dc.typeArticle-
dc.identifier.doi10.1016/j.est.2025.119690-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Energy Storage, v.144-
dc.citation.titleJournal of Energy Storage-
dc.citation.volume144-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001640999200001-
dc.identifier.scopusid2-s2.0-105024552284-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusLAYERED DOUBLE HYDROXIDES-
dc.subject.keywordPlusOXYGEN EVOLUTION-
dc.subject.keywordPlusCHARGE STORAGE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusSUPERCAPACITORS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordAuthorAsymmetric supercapacitor-
dc.subject.keywordAuthorNiCoFe-LDH-
dc.subject.keywordAuthorCu nanowire-
dc.subject.keywordAuthorMXene-
dc.subject.keywordAuthorPseudocapacitor-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE