Full metadata record

DC Field Value Language
dc.contributor.authorNguyen, Duyen Thi-
dc.contributor.authorPalani, Indirajith-
dc.contributor.authorKim, Jongchan-
dc.contributor.authorCho, Kyeongjae-
dc.contributor.authorSong, Da Som-
dc.contributor.authorLim, Jong Sun-
dc.contributor.authorChoi, Jaejin-
dc.contributor.authorJung, Jaemin-
dc.contributor.authorJang, Jaeyoung-
dc.contributor.authorCho, Sangho-
dc.contributor.authorSung, Myung Mo-
dc.date.accessioned2026-02-03T02:00:06Z-
dc.date.available2026-02-03T02:00:06Z-
dc.date.created2026-01-26-
dc.date.issued2026-05-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154095-
dc.description.abstractAchieving high thermoelectric efficiency requires optimizing both the power factor and thermal conductivity. In this study, we introduce a novel approach to significantly enhance the thermoelectric performance of TiS2 by incorporating nanocrystal-amorphous composite nanolayers within an organic–inorganic hybrid superlattice. While the suppression of lattice thermal conductivity through enhanced phonon scattering in the superlattice structure is well established, this work uniquely demonstrates a substantial improvement in the Seebeck coefficient, driven by the nanocrystal-amorphous composite. This architecture not only doubles the power factor but also effectively reduces lattice thermal conductivity, resulting in a synergistic effect that achieves a record-breaking figure of merit (ZT) of 2.95 at 235 °C. These results surpass previous TiS2-based thermoelectric benchmarks and highlight the potential of this innovative approach to advance the development of highly efficient thermoelectric materials for energy conversion application-
dc.publisherElsevier BV-
dc.titleUltrahigh thermoelectric figure of merit in n-type TiS2 thin films via hybrid superlattice with nanocrystal-amorphous composites-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2026.165911-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.727-
dc.citation.titleApplied Surface Science-
dc.citation.volume727-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE