Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Woo, Chaeheon | - |
| dc.contributor.author | Dong, Xue | - |
| dc.contributor.author | Zhang, Xiaojie | - |
| dc.contributor.author | Kim, Yeongjin | - |
| dc.contributor.author | Kim, Kyung In | - |
| dc.contributor.author | Kang, Jinsu | - |
| dc.contributor.author | Kim, Minjae | - |
| dc.contributor.author | Lee, Donghyeon | - |
| dc.contributor.author | Park, Jeong Su | - |
| dc.contributor.author | Mun, Junyoung | - |
| dc.contributor.author | Yu, Hak Ki | - |
| dc.contributor.author | Choi, Jae-Young | - |
| dc.date.accessioned | 2026-02-03T02:00:20Z | - |
| dc.date.available | 2026-02-03T02:00:20Z | - |
| dc.date.created | 2026-01-12 | - |
| dc.date.issued | 2026-02 | - |
| dc.identifier.issn | 0378-7753 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/154098 | - |
| dc.description.abstract | Silicon nanoparticles offer an exceptional theoretical capacity for lithium-ion battery anodes, yet their scalable synthesis from abundant precursors remains hindered by costly and complex processes. Magnesiothermic reduction (MTR) of silica offers a cost-effective alternative using non-toxic precursors, but under atmospheric pressure, it often leads to severe particle aggregation and byproduct formation due to heterogeneous reactions with molten magnesium. Here, we demonstrate that low-pressure conditions (∼1 Torr) fundamentally alter the MTR mechanism by facilitating uniform vapor-phase magnesium transport, thereby enabling the synthesis of silicon nanoparticles. The resulting nanoparticles deliver 2166 mA h g−1 capacity with 73.6 % capacity retention after 100 cycles, substantially outperforming silicon synthesized under atmospheric pressure MTR (33 % retention). Unlike previous MTR studies that consistently yield micrometer-scale aggregated particles regardless of precursor size, our pressure-controlled method enables the synthesis of silicon nanoparticles. This work establishes fundamental design principles for pressure-controlled metallothermic processes that achieve thermal management without a heat-sink medium and demonstrates gram-scale synthesis of high-performance silicon anode materials. | - |
| dc.language | English | - |
| dc.publisher | Elsevier BV | - |
| dc.title | Magnesium vapor-phase-driven synthesis of morphology-preserved silicon nanoparticles from silica for lithium-ion batteries | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1016/j.jpowsour.2025.239007 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | Journal of Power Sources, v.665 | - |
| dc.citation.title | Journal of Power Sources | - |
| dc.citation.volume | 665 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.wosid | 001638482700001 | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
| dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
| dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Electrochemistry | - |
| dc.relation.journalResearchArea | Energy & Fuels | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.type.docType | Article | - |
| dc.subject.keywordPlus | ELECTROLYTE INTERPHASE SEI | - |
| dc.subject.keywordPlus | PERFORMANCE ANODE MATERIAL | - |
| dc.subject.keywordPlus | MAGNESIOTHERMIC REDUCTION | - |
| dc.subject.keywordPlus | POROUS SILICON | - |
| dc.subject.keywordPlus | STATES | - |
| dc.subject.keywordAuthor | Vapor-phase magnesiothermic reduction | - |
| dc.subject.keywordAuthor | Morphology preservation | - |
| dc.subject.keywordAuthor | Lithium-ion batteries | - |
| dc.subject.keywordAuthor | Silicon anodes | - |
| dc.subject.keywordAuthor | Silicon nanoparticles | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.