Full metadata record

DC Field Value Language
dc.contributor.authorWoo, Chaeheon-
dc.contributor.authorDong, Xue-
dc.contributor.authorZhang, Xiaojie-
dc.contributor.authorKim, Yeongjin-
dc.contributor.authorKim, Kyung In-
dc.contributor.authorKang, Jinsu-
dc.contributor.authorKim, Minjae-
dc.contributor.authorLee, Donghyeon-
dc.contributor.authorPark, Jeong Su-
dc.contributor.authorMun, Junyoung-
dc.contributor.authorYu, Hak Ki-
dc.contributor.authorChoi, Jae-Young-
dc.date.accessioned2026-02-03T02:00:20Z-
dc.date.available2026-02-03T02:00:20Z-
dc.date.created2026-01-12-
dc.date.issued2026-02-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154098-
dc.description.abstractSilicon nanoparticles offer an exceptional theoretical capacity for lithium-ion battery anodes, yet their scalable synthesis from abundant precursors remains hindered by costly and complex processes. Magnesiothermic reduction (MTR) of silica offers a cost-effective alternative using non-toxic precursors, but under atmospheric pressure, it often leads to severe particle aggregation and byproduct formation due to heterogeneous reactions with molten magnesium. Here, we demonstrate that low-pressure conditions (∼1 Torr) fundamentally alter the MTR mechanism by facilitating uniform vapor-phase magnesium transport, thereby enabling the synthesis of silicon nanoparticles. The resulting nanoparticles deliver 2166 mA h g−1 capacity with 73.6 % capacity retention after 100 cycles, substantially outperforming silicon synthesized under atmospheric pressure MTR (33 % retention). Unlike previous MTR studies that consistently yield micrometer-scale aggregated particles regardless of precursor size, our pressure-controlled method enables the synthesis of silicon nanoparticles. This work establishes fundamental design principles for pressure-controlled metallothermic processes that achieve thermal management without a heat-sink medium and demonstrates gram-scale synthesis of high-performance silicon anode materials.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleMagnesium vapor-phase-driven synthesis of morphology-preserved silicon nanoparticles from silica for lithium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2025.239007-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Power Sources, v.665-
dc.citation.titleJournal of Power Sources-
dc.citation.volume665-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001638482700001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROLYTE INTERPHASE SEI-
dc.subject.keywordPlusPERFORMANCE ANODE MATERIAL-
dc.subject.keywordPlusMAGNESIOTHERMIC REDUCTION-
dc.subject.keywordPlusPOROUS SILICON-
dc.subject.keywordPlusSTATES-
dc.subject.keywordAuthorVapor-phase magnesiothermic reduction-
dc.subject.keywordAuthorMorphology preservation-
dc.subject.keywordAuthorLithium-ion batteries-
dc.subject.keywordAuthorSilicon anodes-
dc.subject.keywordAuthorSilicon nanoparticles-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE