Full metadata record

DC Field Value Language
dc.contributor.authorSoh, Keunho-
dc.contributor.authorKoo, Seunghoe-
dc.contributor.authorYoon, Byoungjin-
dc.contributor.authorKim, Ji Eun-
dc.contributor.authorChun, Suk Yeop-
dc.contributor.authorHwang, Su In-
dc.contributor.authorJung, Junki-
dc.contributor.authorJang, Ho Won-
dc.contributor.authorHur, Sunghoon-
dc.contributor.authorKim, Kyeongtae-
dc.contributor.authorYoon, Jung Ho-
dc.date.accessioned2026-02-03T02:30:13Z-
dc.date.available2026-02-03T02:30:13Z-
dc.date.created2026-02-02-
dc.date.issued2026-01-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154099-
dc.description.abstractRecent advances in computing including security applications, Monte Carlo simulations, and probabilistic computing, have increased the demand for robust probabilistic elements. Ion-motion-mediated volatile memristors with threshold switching (TS) characteristics have emerged as promising physical entropy sources because of their stochastic conductive filament (CF) formation and rupture. However, optimizing a memristor as an entropy source requires a material system that actively promotes ion motion and the associated CF formation/rupture, along with a quantitative understanding of their coupled electrothermal behavior. In this study, by integrating a porous nanorods (NRs)-based oxide layer that enhances ion-motion pathways, we achieved rapid, device-centric digital and analog random outputs without the need for post-processing. Moreover, we directly visualized the stochastic dynamics of multiple CFs using scanning thermal microscopy (SThM) and verified our findings through electrothermal simulations, confirming the device's inherent randomness. Finally, a bimodal (digital and analog) true random number generator (TRNG) and a probabilistic computing platform demonstrated the versatility of TS memristors as tunable and robust sources of randomness for probability-oriented applications.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleUnraveling Origin of Stochasticity in Multi-Filamentary Memristor-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202527482-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials-
dc.citation.titleAdvanced Functional Materials-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.identifier.scopusid2-s2.0-105028110895-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordAuthorprobabilistic computing-
dc.subject.keywordAuthorvolatile memristor-
dc.subject.keywordAuthorjoule heating-
dc.subject.keywordAuthorscanning thermal microscopy-
dc.subject.keywordAuthortrue random number generator-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE