Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Jeon, Yu-Jin | - |
| dc.contributor.author | Kim, Hyoung Seok | - |
| dc.contributor.author | Lee, Taek Sung | - |
| dc.contributor.author | Park, Soo Hyun | - |
| dc.contributor.author | Yun, Heesup | - |
| dc.contributor.author | Jung, Dae-Hyun | - |
| dc.date.accessioned | 2026-02-03T03:00:19Z | - |
| dc.date.available | 2026-02-03T03:00:19Z | - |
| dc.date.created | 2026-02-02 | - |
| dc.date.issued | 2025-12 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/154102 | - |
| dc.description.abstract | Water availability critically affects basil (Ocimum basilicum L.) growth and physiological performance, making the early and precise monitoring of water-deficit responses essential for precision irrigation. However, conventional visual or biochemical methods are destructive and unsuitable for real-time assessment. This study presents a multimodal optical biosensing and 3D convolutional neural network (3D-CNN) fusion framework for phenotyping physiological responses of basil under water-deficit stress. RGB, depth, and chlorophyll fluorescence (CF) imaging were integrated to capture complementary morphological and photosynthetic information. Through the fusion of 130 optical parameter layers, the 3D-CNN model learned spatial and temporal–spectral features associated with resistance and recovery dynamics, achieving 96.9% classification accuracy—outperforming both 2D-CNN and traditional machine-learning classifiers. Feature-space visualization using t-SNE confirmed that the learned latent representations reflected biologically meaningful stress–recovery trajectories rather than superficial visual differences. This multimodal fusion framework provides a scalable and interpretable approach for the real-time, non-destructive monitoring of crop water stress, establishing a foundation for adaptive irrigation control and intelligent environmental management in precision agriculture. | - |
| dc.language | English | - |
| dc.publisher | MDPI AG | - |
| dc.title | Multimodal Optical Biosensing and 3D-CNN Fusion for Phenotyping Physiological Responses of Basil Under Water Deficit Stress | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.3390/agronomy16010055 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | Agronomy, v.16, no.1 | - |
| dc.citation.title | Agronomy | - |
| dc.citation.volume | 16 | - |
| dc.citation.number | 1 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.wosid | 001657166600001 | - |
| dc.identifier.scopusid | 2-s2.0-105027857207 | - |
| dc.relation.journalWebOfScienceCategory | Agronomy | - |
| dc.relation.journalWebOfScienceCategory | Plant Sciences | - |
| dc.relation.journalResearchArea | Agriculture | - |
| dc.relation.journalResearchArea | Plant Sciences | - |
| dc.type.docType | Article | - |
| dc.subject.keywordPlus | CHLOROPHYLL-A FLUORESCENCE | - |
| dc.subject.keywordPlus | YIELD | - |
| dc.subject.keywordAuthor | multimodal data fusion | - |
| dc.subject.keywordAuthor | chlorophyll fluorescence | - |
| dc.subject.keywordAuthor | 3D convolutional neural networks (3D-CNN) | - |
| dc.subject.keywordAuthor | plant physiological monitoring | - |
| dc.subject.keywordAuthor | precision agriculture | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.