Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Yu-Jin-
dc.contributor.authorKim, Hyoung Seok-
dc.contributor.authorLee, Taek Sung-
dc.contributor.authorPark, Soo Hyun-
dc.contributor.authorYun, Heesup-
dc.contributor.authorJung, Dae-Hyun-
dc.date.accessioned2026-02-03T03:00:19Z-
dc.date.available2026-02-03T03:00:19Z-
dc.date.created2026-02-02-
dc.date.issued2025-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154102-
dc.description.abstractWater availability critically affects basil (Ocimum basilicum L.) growth and physiological performance, making the early and precise monitoring of water-deficit responses essential for precision irrigation. However, conventional visual or biochemical methods are destructive and unsuitable for real-time assessment. This study presents a multimodal optical biosensing and 3D convolutional neural network (3D-CNN) fusion framework for phenotyping physiological responses of basil under water-deficit stress. RGB, depth, and chlorophyll fluorescence (CF) imaging were integrated to capture complementary morphological and photosynthetic information. Through the fusion of 130 optical parameter layers, the 3D-CNN model learned spatial and temporal–spectral features associated with resistance and recovery dynamics, achieving 96.9% classification accuracy—outperforming both 2D-CNN and traditional machine-learning classifiers. Feature-space visualization using t-SNE confirmed that the learned latent representations reflected biologically meaningful stress–recovery trajectories rather than superficial visual differences. This multimodal fusion framework provides a scalable and interpretable approach for the real-time, non-destructive monitoring of crop water stress, establishing a foundation for adaptive irrigation control and intelligent environmental management in precision agriculture.-
dc.languageEnglish-
dc.publisherMDPI AG-
dc.titleMultimodal Optical Biosensing and 3D-CNN Fusion for Phenotyping Physiological Responses of Basil Under Water Deficit Stress-
dc.typeArticle-
dc.identifier.doi10.3390/agronomy16010055-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAgronomy, v.16, no.1-
dc.citation.titleAgronomy-
dc.citation.volume16-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001657166600001-
dc.identifier.scopusid2-s2.0-105027857207-
dc.relation.journalWebOfScienceCategoryAgronomy-
dc.relation.journalWebOfScienceCategoryPlant Sciences-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaPlant Sciences-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHLOROPHYLL-A FLUORESCENCE-
dc.subject.keywordPlusYIELD-
dc.subject.keywordAuthormultimodal data fusion-
dc.subject.keywordAuthorchlorophyll fluorescence-
dc.subject.keywordAuthor3D convolutional neural networks (3D-CNN)-
dc.subject.keywordAuthorplant physiological monitoring-
dc.subject.keywordAuthorprecision agriculture-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE