Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Kiwon-
dc.contributor.authorNoh, Ahyeon-
dc.contributor.authorKim, Yongju-
dc.contributor.authorKwon, Hanui-
dc.contributor.authorLee, Yea-Jin-
dc.contributor.authorPark, Jong Hyuk-
dc.contributor.authorHong, Seokwon-
dc.contributor.authorHong, Pyong Hwa-
dc.contributor.authorMin, Kyeongjae-
dc.contributor.authorKo, Min Jae-
dc.contributor.authorHong, Sung Woo-
dc.date.accessioned2026-02-03T05:30:39Z-
dc.date.available2026-02-03T05:30:39Z-
dc.date.created2026-01-12-
dc.date.issued2026-01-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154114-
dc.description.abstractAchieving rapid autonomous repair in a mechanically robust polymer coating remains a long-standing challenge for flexible displays and electronics. Here, we report a room-temperature self-healing elastomer that resolves this trade-off by incorporating specially designed fluorinated imide additives into a crosslinked network. The fluorinated segments migrate spontaneously to the surface and form nanometer-scale domains that function as an in situ rigid reinforcement layer. Meanwhile, the imide groups form multiple reversible bonds in the bulk, yielding a densely crosslinked yet dynamic network. This hierarchical architecture effectively decouples surface hardness from matrix flexibility by integrating a hard, chemically resistant surface layer with a flexible, self-healing interior. The resulting elastomer combines properties rarely achieved in a single material. It autonomously heals surface scratches within 10 s at room temperature, exhibits a pencil hardness of 4H that surpasses commercially available optical-grade plastics, resists immersion in toluene for over 18 h while retaining more than 90 % optical transparency, and withstands over 200,000 folding/unfolding cycles at a 1.5 mm radius without cracks or delamination. By combining mechanical durability and flexibility with rapid self-healing, this work addresses a key limitation of conventional self-healing polymers. This material design offers a general strategy with broad implications for enhancing the reliability and service life of flexible displays, wearable sensors, and other next-generation electronic devices.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleSurface-segregated nanodomains for a fast room-temperature self-healing elastomer with exceptional scratch and chemical resistance and folding reliability-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.171854-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.527-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume527-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001648883500001-
dc.identifier.scopusid2-s2.0-105025024032-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOLYURETHANE-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorFoldable displays-
dc.subject.keywordAuthorSelf-healing-
dc.subject.keywordAuthorScratch resistance-
dc.subject.keywordAuthorChemical resistance-
dc.subject.keywordAuthorFolding reliability-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE