Full metadata record

DC Field Value Language
dc.contributor.authorKim, Yeonhwa-
dc.contributor.authorShin, Hyun-Beom-
dc.contributor.authorJu, Eunkyo-
dc.contributor.authorLaryn, Tsimafei-
dc.contributor.authorKim, Taehee-
dc.contributor.authorLee, In-Hwan-
dc.contributor.authorKang, Ho Kwan-
dc.contributor.authorChoi, Won Jun-
dc.contributor.authorJung, Daehwan-
dc.date.accessioned2026-02-03T06:00:21Z-
dc.date.available2026-02-03T06:00:21Z-
dc.date.created2026-02-02-
dc.date.issued2026-04-
dc.identifier.issn0927-0248-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154117-
dc.description.abstractEpitaxial integration of III-V solar cells on a silicon substrate offers large-scale, relatively low-fabrication cost, and high-efficiency photovoltaics. However, challenges remain in realizing wide bandgap III-V buffers with low threading dislocation density (TDD) and low parasitic absorption. To address the issues, we explore the epitaxial growth of n-AlxGa1-xAs (x = 0, 0.05, 0.10) buffers on Si to enhance short-circuit current (Jsc) of the III-V/Si tandem cells. Photoluminescence measurements confirm an increased bandgap of 1.55 eV for n-Al0.10Ga0.90As buffer. Higher Al composition increases the TDD while the buffer roughness remains almost constant. Notably, the 1.55 eV n-AlGaAs buffer achieves a TDD of 2.5 x 107cm-2 with two asymmetric step-graded filters. As a proof of concept, GaAs/Si tandem and InGaP/GaAs/Si triple-junction cells achieve enhanced Jscof 8.0 and 8.5 mA/cm2, respectively. This study demonstrates the feasibility of high bandgap n-AlxGa1-xAs buffers to enhance the Jscin Si bottom cells, advancing the development of high-efficiency, low-cost III-V/Si multi-junction solar cells.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleEnhanced short-circuit current density in epitaxial InGaP/GaAs/Si triple-junction solar cells enabled by wide bandgap n-AlGaAs buffers-
dc.typeArticle-
dc.identifier.doi10.1016/j.solmat.2025.114133-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSolar Energy Materials and Solar Cells, v.297-
dc.citation.titleSolar Energy Materials and Solar Cells-
dc.citation.volume297-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001652833200001-
dc.identifier.scopusid2-s2.0-105025424002-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSI-
dc.subject.keywordPlusGAAS-
dc.subject.keywordPlusAL0.2GA0.8AS-
dc.subject.keywordPlusDISLOCATIONS-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusLIFETIME-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusMBE-
dc.subject.keywordAuthorEpitaxial growth-
dc.subject.keywordAuthorIII-V/Si multi-junction solar cell-
dc.subject.keywordAuthorTriple-junction solar cell-
dc.subject.keywordAuthorn-AlGaAs buffer-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE