Full metadata record

DC Field Value Language
dc.contributor.authorHerasymenko, Oleksandra-
dc.contributor.authorSilva, Madhushika-
dc.contributor.authorCorrey, Galen J.-
dc.contributor.authorAbu-Saleh, Abd Al-Aziz A.-
dc.contributor.authorAckloo, Suzanne-
dc.contributor.authorArrowsmith, Cheryl-
dc.contributor.authorAshworth, Alan-
dc.contributor.authorBan, Fuqiang-
dc.contributor.authorBeck, Hartmut-
dc.contributor.authorBishop, Kevin P.-
dc.contributor.authorBohorquez, Hugo J.-
dc.contributor.authorBolotokova, Albina-
dc.contributor.authorBreznik, Marko-
dc.contributor.authorChau, Irene-
dc.contributor.authorChen, Yu-
dc.contributor.authorCherkasov, Artem-
dc.contributor.authorDehaen, Wim-
dc.contributor.authorDella Corte, Dennis-
dc.contributor.authorDenzinger, Katrin-
dc.contributor.authorDoering, Niklas P.-
dc.contributor.authorEdfeldt, Kristina-
dc.contributor.authorEdwards, Aled-
dc.contributor.authorFayne, Darren-
dc.contributor.authorGentile, Francesco-
dc.contributor.authorGibson, Elisa-
dc.contributor.authorGokdemir, Ozan-
dc.contributor.authorGunnarsson, Anders-
dc.contributor.authorGunther, Judith-
dc.contributor.authorIrwin, John J.-
dc.contributor.authorJensen, Jan Halborg-
dc.contributor.authorHarding, Rachel J.-
dc.contributor.authorHillisch, Alexander-
dc.contributor.authorHoffer, Laurent-
dc.contributor.authorHogner, Anders-
dc.contributor.authorHutchinson, Ashley-
dc.contributor.authorKandwal, Shubhangi-
dc.contributor.authorKarlova, Andrea-
dc.contributor.authorKoirala, Kushal-
dc.contributor.authorKotelnikov, Sergei-
dc.contributor.authorKozakov, Dima-
dc.contributor.authorLee, Juyong-
dc.contributor.authorLee, Soowon-
dc.contributor.authorLessel, Uta-
dc.contributor.authorLiu, Sijie-
dc.contributor.authorLiu, Xuefeng-
dc.contributor.authorLoppnau, Peter-
dc.contributor.authorMeiler, Jens-
dc.contributor.authorMoretti, Rocco-
dc.contributor.authorMoroz, Yurii S.-
dc.contributor.authorMuvva, Charuvaka-
dc.contributor.authorOprea, Tudor I.-
dc.contributor.authorPaige, Brooks-
dc.contributor.authorPandit, Amit-
dc.contributor.authorPark, Keunwan-
dc.contributor.authorPoda, Gennady-
dc.contributor.authorProtopopov, Mykola V.-
dc.contributor.authorPutter, Vera-
dc.contributor.authorRavichandran, Rahul-
dc.contributor.authorRognan, Didier-
dc.contributor.authorRosta, Edina-
dc.contributor.authorSabnis, Yogesh-
dc.contributor.authorScott, Thomas-
dc.contributor.authorSeitova, Almagul-
dc.contributor.authorSharma, Purshotam-
dc.contributor.authorSindt, Francois-
dc.contributor.authorSong, Minghu-
dc.contributor.authorSteinmann, Casper-
dc.contributor.authorStevens, Rick-
dc.contributor.authorTalagayev, Valerij-
dc.contributor.authorTararina, Valentyna V.-
dc.contributor.authorTarkhanova, Olga-
dc.contributor.authorTingey, Damon-
dc.contributor.authorTrant, John F.-
dc.contributor.authorTreleaven, Dakota-
dc.contributor.authorTropsha, Alexander-
dc.contributor.authorWalters, Patrick-
dc.contributor.authorWells, Jude-
dc.contributor.authorWestermaier, Yvonne-
dc.contributor.authorWolber, Gerhard-
dc.contributor.authorWortmann, Lars-
dc.contributor.authorZheng, Shuangjia-
dc.contributor.authorFraser, James S.-
dc.contributor.authorSchapira, Matthieu-
dc.date.accessioned2026-02-03T07:30:17Z-
dc.date.available2026-02-03T07:30:17Z-
dc.date.created2026-02-02-
dc.date.issued2026-01-
dc.identifier.issn1549-9596-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154138-
dc.description.abstractThe third Critical Assessment of Computational Hit-finding Experiments (CACHE) challenged computational teams to identify chemically novel ligands targeting the macrodomain 1 of SARS-CoV-2 Nsp3, a promising coronavirus drug target. Twenty-three groups deployed diverse design strategies to collectively select 1739 ligand candidates. While over 85% of the designed molecules were chemically novel, the best experimentally confirmed hits were structurally similar to previously published compounds. Confirming a trend observed in CACHE #1 and #2, two of the best-performing workflows used compounds selected by physics-based computational screening methods to train machine learning models able to rapidly screen large chemical libraries, while four others used exclusively physics-based approaches. Three pharmacophore searches and one fragment growing strategy were also part of the seven winning workflows. While active molecules discovered by CACHE #3 participants largely mimicked the adenine ring of the endogenous substrate, ADP-ribose, preserving the canonical chemotype commonly observed in previously reported Nsp3-Mac1 ligands, they still provide novel structure-activity relationship insights that may inform the development of future antivirals. Collectively, these results show that multiple molecular design strategies can efficiently converge on similar potent molecules.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleCACHE Challenge #3: Targeting the Nsp3 Macrodomain of SARS-CoV-2-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jcim.5c02441-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Chemical Information and Modeling-
dc.citation.titleJournal of Chemical Information and Modeling-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.relation.journalWebOfScienceCategoryChemistry, Medicinal-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalResearchAreaPharmacology & Pharmacy-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle; Early Access-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE