Full metadata record

DC Field Value Language
dc.contributor.authorKim, Soobin-
dc.contributor.authorHuang, Yuanjiu-
dc.contributor.authorKam, Dong-Hyuck-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorLee, Kee-Ahn-
dc.date.accessioned2026-02-03T08:30:11Z-
dc.date.available2026-02-03T08:30:11Z-
dc.date.created2026-02-02-
dc.date.issued2026-04-
dc.identifier.issn0010-938X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154152-
dc.description.abstractThis study demonstrates the superior hydrogen embrittlement (HE) resistance of Ti-6Al-4V fabricated by wire arc additive manufacturing (WAAM) compared with its wrought counterpart under high-pressure gaseous hydrogen charging (300 degrees C, 15 MPa, 72 h). After hydrogen exposure, both alloys exhibited increased strength; however, their ductility responses differed significantly. The WAAM specimen retained stable tensile properties, with elongation decreasing from 9.33 % to 8.91 %, corresponding to a HE index (HEI) of only 4.5 %. In contrast, the wrought specimen showed a substantial ductility reduction, from 10.42 % to 7.73 %, resulting in an HEI of 25.8 % and indicating much higher susceptibility to embrittlement. Microstructural and crystallographic analyses revealed that the continuous alpha/(3 lamellar structure in WAAM activated hydrogen-enhanced localized plasticity (HELP) in a spatially distributed manner across multiple interfaces in conjunction with dual hydrogentrapping states. Such interfacial dislocation activity facilitated slip transfer and alleviated strain localization, thereby enabling a more uniform macroscopic deformation response. Conversely, the wrought alloy exhibited highly localized HELP together with hydrogen-enhanced decohesion (HEDE) within the (3 phase, associated with a single deep trapping state that accelerated premature cracking. These results highlight that the unique interfacial network generated by WAAM mitigates hydrogen-induced damage and preserves ductility, underscoring its potential as a titanium structural material suitable for hydrogen-containing environments.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleSuperior hydrogen embrittlement resistance of WAAM Ti-6Al-4V compared to wrought alloy under gaseous hydrogen charging-
dc.typeArticle-
dc.identifier.doi10.1016/j.corsci.2025.113591-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCorrosion Science, v.261-
dc.citation.titleCorrosion Science-
dc.citation.volume261-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001665315900001-
dc.identifier.scopusid2-s2.0-105028256017-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-ENTROPY ALLOY-
dc.subject.keywordPlusBEAM MELTING EBM-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusMANUFACTURED TI-6AL-4V-
dc.subject.keywordPlusFATIGUE PERFORMANCE-
dc.subject.keywordPlusVARIANT SELECTION-
dc.subject.keywordPlusVOID GROWTH-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusWIRE-
dc.subject.keywordAuthorWire arc additive manufacturing-
dc.subject.keywordAuthorTitanium alloy-
dc.subject.keywordAuthorHydrogen embrittlement-
dc.subject.keywordAuthorGaseous hydrogen charging-
dc.subject.keywordAuthorMicrostructural evolution-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE