Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Juwon-
dc.contributor.authorKim, Huiwon-
dc.contributor.authorLee, Won Jun-
dc.contributor.authorJoo, Beom Soo-
dc.contributor.authorKo, Hyungduk-
dc.contributor.authorHan, Il Ki-
dc.contributor.authorKang, Gumin-
dc.contributor.authorHan, Jae-Hoon-
dc.contributor.authorAhn, DaeHwan-
dc.contributor.authorJeong, Mun Seok-
dc.contributor.authorKang, JoonHyun-
dc.date.accessioned2026-02-03T08:30:34Z-
dc.date.available2026-02-03T08:30:34Z-
dc.date.created2026-02-02-
dc.date.issued2026-01-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154157-
dc.description.abstractInP high electron mobility transistors (InP HEMTs) have attracted attention as cryogenic low noise amplifiers (LNAs) for quantum computing due to their high speed, high gain, and low-noise characteristics. Reducing gate leakage current is critical for achieving low-noise performance in InP HEMTs. Conventional approaches have mainly focused on optimizing the thickness of the lattice-matched In0.522Al0.478As layer to suppress the leakage current. However, leakage current still remains a major issue. Here, we propose a bandgap engineering approach using Al-rich In0.362Al0.638As layers to decrease the gate leakage current without increasing the layer thickness in InP HEMTs. The increased bandgap in Al-rich InAlAs decreases the gate leakage current and enhances electron confinement effect at the same thickness. In addition, the Al-rich InAlAs layer enables strain compensation for In-rich InGaAs channel layer and decrease the gate capacitance, which is favorable for high-speed operation. We successfully demonstrated low gate leakage InP HEMTs incorporating Al-rich In0.362Al0.638As in both the buffer and the spacer layers. Our InP HEMTs exhibited superior performance, achieving a high Ion/Ioff ratio of 1.5 × 105, a steep subthreshold swing (SS) of 65 mV/dec, and a high effective mobility of more than 9000 cm2/Vs, while maintaining a low gate leakage current of less than 6 nA/μm. This study will provide design guidelines for future low-noise InP HEMTs research.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleInP HEMTs employing strain-compensated Al-rich InAlAs for low-noise and low-power consumption-
dc.typeArticle-
dc.identifier.doi10.1016/j.jallcom.2026.185970-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Alloys and Compounds, v.1051-
dc.citation.titleJournal of Alloys and Compounds-
dc.citation.volume1051-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001663410900001-
dc.identifier.scopusid2-s2.0-105026658187-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusTECHNOLOGY-
dc.subject.keywordAuthorInP HEMT-
dc.subject.keywordAuthorAl-rich InAlAs-
dc.subject.keywordAuthorStrain compensation-
dc.subject.keywordAuthorGate leakage-
dc.subject.keywordAuthorEffective mobility-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE