Full metadata record

DC Field Value Language
dc.contributor.authorCho, Min Su-
dc.contributor.authorZang, Yanmei-
dc.contributor.authorPark, Sung Joon-
dc.contributor.authorAn, Byeong-seon-
dc.contributor.authorLee, Ho Jin-
dc.contributor.authorGaur, Ashishi-
dc.contributor.authorAli, Ghulam-
dc.contributor.authorKim, Mingony-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorPark, Sungbin-
dc.contributor.authorSung, Yung-eun-
dc.contributor.authorKim, Daehae-
dc.contributor.authorKim, Ki Jae-
dc.contributor.authorMyung, Chang Woo-
dc.contributor.authorHan, Hyuksu-
dc.date.accessioned2026-02-03T09:00:57Z-
dc.date.available2026-02-03T09:00:57Z-
dc.date.created2026-02-02-
dc.date.issued2025-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154173-
dc.description.abstractAnion exchange membrane fuel cells (AEMFCs) offer a sustainable energy solution with non-precious metal catalysts, reduced degradation, and fuel flexibility. However, the sluggish oxygen reduction reaction (ORR) at the cathode and durability concerns impede commercialization. To address these challenges, this study presents a dual-atomic SiFe–N–C catalyst derived from pinecones, a naturally abundant biomass resource. The catalyst features a nitrogen-rich porous carbon matrix that stabilizes Si–Fe dual-atomic sites during pyrolysis. Advanced analyses confirm Fe–Si and Fe–N bonds, which synergistically enhance ORR activity by optimizing electronic structures and intermediate adsorption energies. The SiFe–N–C catalyst surpasses Pt/C and Fe–N–C single-atom benchmarks with superior ORR activity and excellent long-term durability supported by high resistance to CO poisoning as well as methanol crossover. It also demonstrates a promising electrochemical performance as a catalytic material for the separator of Li–S battery. Mechanistic studies reveal that the Si–Fe dual-atomic configuration promotes an efficient Fe–O–O–Si pathway, reducing energy barriers and offering a cost-effective, high-performance solution for electrochemical energy conversion and storage applications.-
dc.languageEnglish-
dc.publisherWiley-
dc.titleSynergistic Fe-Si Dual-Site Pathway Engineering in Biomass-Derived Carbon Matrix for High-Performance Oxygen Reduction Reaction-
dc.typeArticle-
dc.identifier.doi10.1002/cey2.70154-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon Energy-
dc.citation.titleCarbon Energy-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105025582677-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusN-C CATALYST-
dc.subject.keywordAuthorelectrocatalysis-
dc.subject.keywordAuthorenergy storage and conversion-
dc.subject.keywordAuthorfuel cells-
dc.subject.keywordAuthorheterocatalysis-
dc.subject.keywordAuthornanomaterials-
dc.subject.keywordAuthorcarbon-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE