Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Choi, Hyung Jong | - |
| dc.contributor.author | Kim, Keun Hee | - |
| dc.contributor.author | Jeong, Heon Jun | - |
| dc.contributor.author | Kim, Dong Hwan | - |
| dc.contributor.author | Han, Gwon Deok | - |
| dc.contributor.author | Ji, Ho-Il | - |
| dc.contributor.author | Lee, Jong-Ho | - |
| dc.contributor.author | Prinz, Fritz B. | - |
| dc.contributor.author | Bae, Kiho | - |
| dc.contributor.author | Shim, Joon Hyung | - |
| dc.date.accessioned | 2026-02-03T09:30:39Z | - |
| dc.date.available | 2026-02-03T09:30:39Z | - |
| dc.date.created | 2026-02-02 | - |
| dc.date.issued | 2025-12 | - |
| dc.identifier.issn | 0272-8842 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/154179 | - |
| dc.description.abstract | The effects of sintering temperature and Zr/Ce ratio on BaZrxCe0.8–xY0.1Yb0.1O3−δ (BZCYYb) for proton ceramic fuel cell applications were investigated. Higher sintering temperatures and higher Ce contents led to increased formation of Y/Yb-rich secondary phases, attributed to Ba evaporation and Ce loss, which disrupted B-site stability. Electrochemical testing using thin-film electrolytes on the anode-supported cells showed that sintering at ≥1400 °C caused high interfacial resistance due to these secondary phases. In contrast, sintering at 1300 °C resulted in insufficient densification and high ohmic resistance. The optimal performance was achieved with a BZCYYb 2611 sample sintered at 1350 °C, exhibiting good densification, minimal secondary phase formation, and high power density across various operating temperatures. This sample demonstrated the best chemical and electrochemical stability. | - |
| dc.language | English | - |
| dc.publisher | Elsevier | - |
| dc.title | Process-property relationships of protonic ceramic electrolytes | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1016/j.ceramint.2025.10.353 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | Ceramics International, v.51, no.29, pp.61608 - 61618 | - |
| dc.citation.title | Ceramics International | - |
| dc.citation.volume | 51 | - |
| dc.citation.number | 29 | - |
| dc.citation.startPage | 61608 | - |
| dc.citation.endPage | 61618 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.wosid | 001652159800016 | - |
| dc.identifier.scopusid | 2-s2.0-105024312653 | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Ceramics | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.type.docType | Article | - |
| dc.subject.keywordPlus | OXIDE FUEL-CELLS | - |
| dc.subject.keywordPlus | CHEMICAL-STABILITY | - |
| dc.subject.keywordPlus | TRANSPORT-PROPERTIES | - |
| dc.subject.keywordPlus | IONIC-RADII | - |
| dc.subject.keywordPlus | CONDUCTORS | - |
| dc.subject.keywordPlus | NONSTOICHIOMETRY | - |
| dc.subject.keywordPlus | CONDUCTIVITY | - |
| dc.subject.keywordPlus | CATHODE | - |
| dc.subject.keywordAuthor | Proton ceramic fuel cell | - |
| dc.subject.keywordAuthor | Electrolyte | - |
| dc.subject.keywordAuthor | Secondary-phase | - |
| dc.subject.keywordAuthor | Sintering temperature | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.