Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Sung Yeol-
dc.contributor.authorLiu, Yiming-
dc.contributor.authorWoo, Chaeheon-
dc.contributor.authorChoi, Yejung-
dc.contributor.authorKang, Won Jun-
dc.contributor.authorYuk, Geunhee-
dc.contributor.authorBang, Hyeon-Seok-
dc.contributor.authorJeon, Jiho-
dc.contributor.authorChoi, Geon-
dc.contributor.authorKim, Jung Kyu-
dc.contributor.authorKim, Hyun You-
dc.contributor.authorLee, Dong Ki-
dc.contributor.authorPark, Hyesung-
dc.contributor.authorChoi, Jae-Young-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorBaik, Jeong Min-
dc.date.accessioned2026-02-04T06:00:29Z-
dc.date.available2026-02-04T06:00:29Z-
dc.date.created2026-02-02-
dc.date.issued2026-02-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154193-
dc.description.abstractThe development of efficient and durable electrocatalysts for CO2 electroreduction remains a critical challenge to sustainable fuel generation. Herein, we report a structurally and electronically engineered Bi–based catalyst comprising a Bi/Bi3Ni heterostructure embedded with nitrogen-doped carbon dots (N − CDs), synthesized via a chelation-assisted porous nanostructuring method. The incorporation of Ni enhances electronic conductivity and suppresses Bi oxidation, while the N − CDs modulate the local Fermi level and p-orbital electron density, stabilizing OCHO* intermediates and improving CO2 activation. Operando X-ray absorption spectroscopy and in-situ Raman analyses reveal that BiNi–N-CDs undergo Bi3 + →Bi0 reduction and form bidentate formate intermediates, while Ni alloying and N-CDs synergistically lower the OCO → OCHO hydrogenation barrier, enabling efficient formate production at mild potentials, supported by density functional theory calculations. The optimized BiNi (10 %)–0.6 mL N − CDs catalyst achieves a maximum formate Faradaic efficiency of 96 % at −0.9 V vs. RHE, while exhibiting outstanding operational stability over 100 h, with minimal performance loss. This work demonstrates a synergistic strategy that combines alloy engineering, electronic modulation, and interfacial design to realize highly selective and long-lived CO2 reduction catalysts.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleStructurally and electronically coupled Bi/Bi3Ni–carbon dot catalyst for efficient and long-lived CO2 electroreduction to formate-
dc.typeArticle-
dc.identifier.doi10.1016/j.nanoen.2025.111690-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Energy, v.148-
dc.citation.titleNano Energy-
dc.citation.volume148-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001659778300001-
dc.identifier.scopusid2-s2.0-105027292320-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusBI2O3-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusACID-
dc.subject.keywordAuthorBi/Bi3Ni heterostructure-
dc.subject.keywordAuthorNitrogen-doped carbon dots-
dc.subject.keywordAuthorFormate Faradaic efficiency-
dc.subject.keywordAuthorOperando X-ray absorption spectroscopy-
dc.subject.keywordAuthorCO2 electroreduction-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE