Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Li, Hang | - |
| dc.contributor.author | Gao, Zhe | - |
| dc.contributor.author | Bai, Xingxing | - |
| dc.contributor.author | Jin, Yongming | - |
| dc.contributor.author | Meng, Xianglong | - |
| dc.contributor.author | Cai, Wei | - |
| dc.contributor.author | Suh, Jin-Yoo | - |
| dc.contributor.author | Jang, Jae-il | - |
| dc.date.accessioned | 2026-02-04T06:00:41Z | - |
| dc.date.available | 2026-02-04T06:00:41Z | - |
| dc.date.created | 2026-02-02 | - |
| dc.date.issued | 2026-01 | - |
| dc.identifier.issn | 2166-3831 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/154196 | - |
| dc.description.abstract | Bulk Ti-Ni-Cu-Pd alloys show decent thermal- and load-cycling stability, yet low strength and limited recoverable strain. Here, we design a gradient Ti-Ni-Cu-Pd ribbon via nanoscale dual-phase (nanocrystalline-amorphous) engineering. The ribbon achieves 1-2x higher strength than bulk austenite while delivering similar to 4% fully recoverable strain (bulk well below 3%). Under high load, the strain amplitude declines only 0.5-0.7% after 10 loading cycles, demonstrating exceptional cyclic stability. These properties arise from phase synergy across the gradient architecture, enabling compact, high-force, repeatable actuators. [GRAPHICS] | - |
| dc.language | English | - |
| dc.publisher | TAYLOR & FRANCIS INC | - |
| dc.title | High-strength gradient Ti-Ni-Cu-Pd ribbon with large recoverable strain and high cyclic stability under load | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1080/21663831.2026.2613044 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | Materials Research Letters | - |
| dc.citation.title | Materials Research Letters | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.identifier.scopusid | 2-s2.0-105027954077 | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
| dc.type.docType | Article; Early Access | - |
| dc.subject.keywordPlus | SHAPE-MEMORY ALLOYS | - |
| dc.subject.keywordPlus | MARTENSITIC-TRANSFORMATION | - |
| dc.subject.keywordPlus | METALLIC GLASSES | - |
| dc.subject.keywordPlus | HYSTERESIS | - |
| dc.subject.keywordPlus | NANOINDENTATION | - |
| dc.subject.keywordPlus | MICROSTRUCTURE | - |
| dc.subject.keywordAuthor | Shape memory alloys | - |
| dc.subject.keywordAuthor | recoverable strain | - |
| dc.subject.keywordAuthor | cyclic stability | - |
| dc.subject.keywordAuthor | nanoindentation | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.