Full metadata record

DC Field Value Language
dc.contributor.authorLi, Hang-
dc.contributor.authorGao, Zhe-
dc.contributor.authorBai, Xingxing-
dc.contributor.authorJin, Yongming-
dc.contributor.authorMeng, Xianglong-
dc.contributor.authorCai, Wei-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorJang, Jae-il-
dc.date.accessioned2026-02-04T06:00:41Z-
dc.date.available2026-02-04T06:00:41Z-
dc.date.created2026-02-02-
dc.date.issued2026-01-
dc.identifier.issn2166-3831-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154196-
dc.description.abstractBulk Ti-Ni-Cu-Pd alloys show decent thermal- and load-cycling stability, yet low strength and limited recoverable strain. Here, we design a gradient Ti-Ni-Cu-Pd ribbon via nanoscale dual-phase (nanocrystalline-amorphous) engineering. The ribbon achieves 1-2x higher strength than bulk austenite while delivering similar to 4% fully recoverable strain (bulk well below 3%). Under high load, the strain amplitude declines only 0.5-0.7% after 10 loading cycles, demonstrating exceptional cyclic stability. These properties arise from phase synergy across the gradient architecture, enabling compact, high-force, repeatable actuators. [GRAPHICS]-
dc.languageEnglish-
dc.publisherTAYLOR & FRANCIS INC-
dc.titleHigh-strength gradient Ti-Ni-Cu-Pd ribbon with large recoverable strain and high cyclic stability under load-
dc.typeArticle-
dc.identifier.doi10.1080/21663831.2026.2613044-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials Research Letters-
dc.citation.titleMaterials Research Letters-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.identifier.scopusid2-s2.0-105027954077-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusSHAPE-MEMORY ALLOYS-
dc.subject.keywordPlusMARTENSITIC-TRANSFORMATION-
dc.subject.keywordPlusMETALLIC GLASSES-
dc.subject.keywordPlusHYSTERESIS-
dc.subject.keywordPlusNANOINDENTATION-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordAuthorShape memory alloys-
dc.subject.keywordAuthorrecoverable strain-
dc.subject.keywordAuthorcyclic stability-
dc.subject.keywordAuthornanoindentation-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE