Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jae Seo-
dc.contributor.authorPark, Ji Yong-
dc.contributor.authorJang, Da Hee-
dc.contributor.authorKim, Jung Sub-
dc.contributor.authorChoi, Minseouk-
dc.contributor.authorKang, Yosub-
dc.contributor.authorKang, Ji Won-
dc.contributor.authorKim, Dong Kyum-
dc.contributor.authorLee, Yongjin-
dc.contributor.authorCho, Young Shik-
dc.contributor.authorKim, Jae Ho-
dc.contributor.authorKim, Taehoon-
dc.contributor.authorYang, Seung Jae-
dc.date.accessioned2026-02-04T06:00:45Z-
dc.date.available2026-02-04T06:00:45Z-
dc.date.created2026-02-02-
dc.date.issued2026-01-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154197-
dc.description.abstractFlexible and transparent electrodes (FTEs) are fundamental to the advancement of next-generation wearable electronics. Carbon nanotube (CNT)-based transparent films have emerged as compelling alternatives to conventional indium tin oxide (ITO)-based electrodes, owing to their superior optoelectronic properties, exceptional physicochemical stability, and remarkable mechanical flexibility. However, achieving high optical transmittance (T) while preserving electrical conductivity and scalability remains a formidable challenge. Here, we present a novel nano-percolation strategy to integrate high transparency with strong network connectivity in aerogels using a minimal amount of CNTs. Temperature-induced percolation enables the creation of resilient aerogel networks, even at unprecedentedly low CNT concentrations. This approach leads to the fabrication of FTEs exhibiting a T of up to 99.4 %, alongside unparalleled optoelectronic properties and scalability for large-scale production. The CNT films combine high functionality with transparency, making them ideal for a range of advanced applications.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleNano-percolation engineering of carbon nanotube films for ultra-high transmittance exceeding 99 %-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.172247-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.528-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume528-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001658563900001-
dc.identifier.scopusid2-s2.0-105026856872-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusTRANSPARENT ELECTRODES-
dc.subject.keywordPlusSINGLE-WALL-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordAuthorCarbon nanotubes-
dc.subject.keywordAuthorTransparent conductive films-
dc.subject.keywordAuthorNano-percolation engineering-
dc.subject.keywordAuthorFloating catalyst vapor deposition-
dc.subject.keywordAuthorLarge-scale production-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE