Full metadata record

DC Field Value Language
dc.contributor.authorCho, Hongjun-
dc.contributor.authorKim, Jeongryul-
dc.contributor.authorSong, Yongnam-
dc.contributor.authorKim, Keri-
dc.date.accessioned2026-02-04T08:00:43Z-
dc.date.available2026-02-04T08:00:43Z-
dc.date.created2026-02-02-
dc.date.issued2025-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154219-
dc.description.abstractIn collaborative robotics, achieving high-speed yet safe object handover remains a key challenge. Rigid grippers pose impact risks to humans, whereas compliant grippers compromise grip stiffness and positional accuracy. This paper presents the three-finger rapid variable-stiffness gripper (RVSG), which modulates grip stiffness within one second through a simplified hardware mechanism by adjusting only the elastic cable initial tension T-0 and the finger spacing w1. Based on a simplified model, the variation in gripper stiffness was simulated by tuning T-0 and w(1), and subsequently validated with a prototype implementation. By adjusting these two parameters, the prototype attains a variable stiffness range of 12.25 to 75.33 N/m, corresponding to a relative stiffness variation efficiency of 615%. Collision safety tests measured contact forces between 0.17 and 1.01 N, representing a 92.5 to 98.7% reduction compared to commercial rigid grippers. These results demonstrate a lightweight, low-complexity solution for fast and safe human-robot handovers, with potential applications in assembly, logistics, and surgical assistance. Future work will extend the approach to three-axis stiffness control and develop higher-order models that incorporate friction and effective contact distance.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleVariable Stiffness Gripper for Fast and Safe HumanRobot Object Handover-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2025.3648343-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Access, v.13, pp.217437 - 217451-
dc.citation.titleIEEE Access-
dc.citation.volume13-
dc.citation.startPage217437-
dc.citation.endPage217451-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001652569200005-
dc.identifier.scopusid2-s2.0-105026021302-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.type.docTypeArticle-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorGrippers-
dc.subject.keywordAuthorHandover-
dc.subject.keywordAuthorForce-
dc.subject.keywordAuthorRobots-
dc.subject.keywordAuthorSafety-
dc.subject.keywordAuthorCollision avoidance-
dc.subject.keywordAuthorCables-
dc.subject.keywordAuthorHardware-
dc.subject.keywordAuthorCollaborative robots-
dc.subject.keywordAuthorJamming-
dc.subject.keywordAuthorCobot gripper-
dc.subject.keywordAuthorelastic cable-
dc.subject.keywordAuthorsafe handover-
dc.subject.keywordAuthorvariable stiffness-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE