Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyo Jeong-
dc.contributor.authorShin, Seungyong-
dc.contributor.authorKyhm, Jihoon-
dc.contributor.authorOh, Soong Ju-
dc.contributor.authorJang, Ho Seong-
dc.date.accessioned2026-02-19T04:30:42Z-
dc.date.available2026-02-19T04:30:42Z-
dc.date.created2026-02-19-
dc.date.issued2026-02-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154277-
dc.description.abstractThe realization of primary red, green, and blue (RGB) luminescence from a single upconversion nanoparticle (UCNP) enables multicolor fine-tuning of the upconversion luminescence through the combination of RGB emissions, ultimately making it suitable for color volumetric display applications. However, excitation-wavelength-orthogonal RGB-emitting UCNPs require complex nanostructures and the synthesis of such RGB-emitting single UCNPs remains a great challenge. Here, we report a core@quadruple-shell (C@4S) single UCNP that exhibits primary tricolor upconversion luminescence under near-infrared (NIR) excitations. We first synthesize NaYbF4:Ho which emits green and red light under low- and high-power 980 nm NIR light. Then the NaYbF4:Ho core is coated with a NaYF4 shell followed by the successive growth of NaYF4:Yb,Tm, NaYF4:Nd,Yb, and NaYF4 shells. The synthesized NaYbF4:Ho@NaYF4@NaYF4:Yb,Tm@NaYF4:Nd,Yb@NaYF4 C@4S UCNPs emit blue light under 800 nm excitation. By adjusting the power and wavelength of NIR light, the C@4S UCNPs exhibit various emission colors, including blue, sky-blue, green, yellow-green, orange, red, white, and more. Finally, the transparent C@4S UCNP-polydimethylsiloxane composite is prepared and various color images are displayed by simply scanning NIR light within the composite, indicating the high potential of the C@4S UCNPs for full-color display applications.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titlePrimary RGB-emitting single core@quadruple-shell upconversion nanoparticle for full-color displays-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2026.173456-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.530-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume530-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001685613200001-
dc.identifier.scopusid2-s2.0-105029278040-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusENERGY MIGRATION-
dc.subject.keywordPlusLUMINESCENCE-
dc.subject.keywordPlusLANTHANIDE-
dc.subject.keywordPlusNANOPHOSPHORS-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusRED-
dc.subject.keywordAuthorUpconversion-
dc.subject.keywordAuthorCore@multi-shell-
dc.subject.keywordAuthorOrthogonal luminescence-
dc.subject.keywordAuthorColor tuning-
dc.subject.keywordAuthorTransparent displays-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE