Full metadata record

DC Field Value Language
dc.contributor.authorKim, Do-Heon-
dc.contributor.authorPark, Ji Young-
dc.contributor.authorLee, Yunjeong-
dc.contributor.authorMoon, Hyeokgyun-
dc.contributor.authorLee, Jinkee-
dc.contributor.authorPark, Hye Sung-
dc.contributor.authorHong, Seok Won-
dc.contributor.authorBaik, Jeong Min-
dc.date.accessioned2026-02-19T05:00:50Z-
dc.date.available2026-02-19T05:00:50Z-
dc.date.created2026-02-19-
dc.date.issued2026-01-
dc.identifier.issn1369-7021-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154292-
dc.description.abstractThe remediation of nanoplastic particles (NPPs) from aqueous environments remains a significant challenge, given their small dimensions, limited adsorption affinity, and high mobility. In this work, we report a reusable electrokinetic filtration platform that enables high-flux sequestration of NPPs along with self-sustained operation. The system employs magnesium oxide-coated porous nickel foam, achieving >99 % filtration efficiency (FE) for 50 nm polystyrene particles under a low-voltage (10 V) electric field, with a flux of 39.5 mL·cm−2·min−1. A theoretical framework was developed to describe the electrokinetic transport and surface adsorption, which demonstrated strong agreement with experimental observations. The model was further validated using cationic poly(vinyl alcohol)/poly(ethylene imine)–carbon dots, whose protonated amine groups exhibited a FE of 97.7 %. The platform enables regeneration by field reversal, consistently maintaining >93 % FE over 20 cycles. Integration with a triboelectric nanogenerator allows for off-grid operation while preserving >96 % FE. The system demonstrates stable performance in both tap and river water, reducing total dissolved and suspended solids to levels below WHO drinking water guidelines. This work offers an energy-independent, scalable solution for the remediation of NPPs in complex, real-world water matrices.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHigh-efficiency, reusable electrokinetic filtration platform for high-Flux nanoplastic sequestration and self-powered operation-
dc.typeArticle-
dc.identifier.doi10.1016/j.mattod.2025.12.008-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials Today, v.92, pp.282 - 293-
dc.citation.titleMaterials Today-
dc.citation.volume92-
dc.citation.startPage282-
dc.citation.endPage293-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.identifier.wosid001678344500001-
dc.identifier.scopusid2-s2.0-105025123692-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPARTICLE-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusSTATE-
dc.subject.keywordAuthorNanoplastic filtration-
dc.subject.keywordAuthorIsoelectric point-
dc.subject.keywordAuthorElectrokinetic phenomena-
dc.subject.keywordAuthorTriboelectric nanogenerator-
dc.subject.keywordAuthorRecyclable-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE