Full metadata record

DC Field Value Language
dc.contributor.authorWest, Jeffrey-
dc.contributor.authorAdler, Fred-
dc.contributor.authorGallaher, Jill-
dc.contributor.authorStrobl, Maximilian-
dc.contributor.authorBrady-Nicholls, Renee-
dc.contributor.authorBrown, Joel-
dc.contributor.authorRoberson-Tessi, Mark-
dc.contributor.authorKim, Eunjung-
dc.contributor.authorNoble, Robert-
dc.contributor.authorViossat, Yannick-
dc.contributor.authorBasanta, David-
dc.contributor.authorAnderson, Alexander RA-
dc.date.accessioned2024-01-12T02:31:25Z-
dc.date.available2024-01-12T02:31:25Z-
dc.date.created2023-03-27-
dc.date.issued2023-03-
dc.identifier.issn2050-084X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75769-
dc.description.abstractAdaptive therapy is a dynamic cancer treatment protocol that updates (or ‘adapts’) treatment decisions in anticipation of evolving tumor dynamics. This broad term encompasses many possible dynamic treatment protocols of patient-specific dose modulation or dose timing. Adaptive therapy maintains high levels of tumor burden to benefit from the competitive suppression of treatment-sensitive subpopulations on treatment-resistant subpopulations. This evolution-based approach to cancer treatment has been integrated into several ongoing or planned clinical trials, including treatment of metastatic castrate resistant prostate cancer, ovarian cancer, and BRAF-mutant melanoma. In the previous few decades, experimental and clinical investigation of adaptive therapy has progressed synergistically with mathematical and computational modeling. In this work, we discuss 11 open questions in cancer adaptive therapy mathematical modeling. The questions are split into three sections: (1) integrating the appropriate components into mathematical models (2) design and validation of dosing protocols, and (3) challenges and opportunities in clinical translation.</jats:p>-
dc.languageEnglish-
dc.publishereLife Sciences Publications-
dc.titleA survey of open questions in adaptive therapy: Bridging mathematics and clinical translation-
dc.typeArticle-
dc.identifier.doi10.7554/elife.84263-
dc.description.journalClass1-
dc.identifier.bibliographicCitationeLife, v.12-
dc.citation.titleeLife-
dc.citation.volume12-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000958356000001-
dc.relation.journalWebOfScienceCategoryBiology-
dc.relation.journalResearchAreaLife Sciences & Biomedicine - Other Topics-
dc.type.docTypeReview-
dc.subject.keywordPlusINTERMITTENT ANDROGEN SUPPRESSION-
dc.subject.keywordPlusPROSTATE-CANCER-
dc.subject.keywordPlusDRUG-RESISTANCE-
dc.subject.keywordPlusSURVIVAL-TIME-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusCHEMOTHERAPY-
dc.subject.keywordPlusDEPRIVATION-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusBONE-
dc.subject.keywordPlusPROGRESSION-
dc.subject.keywordAuthoradaptive therapy-
dc.subject.keywordAuthormathematical modeling-
dc.subject.keywordAuthordrug resistance-
dc.subject.keywordAuthorcancer evolution & evolution-
dc.subject.keywordAuthorpredictive modeling-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE