Full metadata record

DC Field Value Language
dc.contributor.author배준호-
dc.contributor.authorOh Su Min-
dc.contributor.authorLee, Byeong Moon-
dc.contributor.authorLee Cheol Hoon-
dc.contributor.authorChung, Jinkyu-
dc.contributor.authorKim, Juwon-
dc.contributor.authorJo, Sugeun-
dc.contributor.authorSeo, Sungjae-
dc.contributor.authorLim, Jongwoo-
dc.contributor.authorChung, Seungjun-
dc.date.accessioned2024-01-12T02:31:36Z-
dc.date.available2024-01-12T02:31:36Z-
dc.date.created2023-03-12-
dc.date.issued2023-03-
dc.identifier.issn2405-8297-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75775-
dc.description.abstractThe era of miniaturized and customized electronics requires scalable energy storage devices with versatile shapes. From the perspective of manufacturing, direct ink writing (DIW)-based 3D printing has attracted unprecedented interest, paving the way to demonstrate micro-batteries with design freedom and outstanding performance. Despite demands for all-printed Li-ion batteries with maskless processing, most of the efforts have been dedicated to developing printable active electrodes or building the 3D architecture, remaining challenges in both manufacturing and printable materials toward form-free, all 3D DIW printed Li-ion batteries. Herein, we present all 3D DIW printed, scalable shape versatile Li-ion batteries (ADP-LIBs) with high-performance, printable gel polymer electrolytes (GPEs). The rheological optimization of DIW printable inks for solid-state current collectors, electrodes, electrolytes, and packaging enables us to demonstrate well-defined shape-versatile ADP-LIBs with reliable extrusion. In particular, UV-curable polydimethylsiloxane (PDMS) and ethoxylated trimethylolpropane triacrylate (ETPTA) monomers provide thixotropic fluid behaviors and a mechanical framework in the quasi-solid-state electrolytes, respectively, which results in high-throughput and mechanically robust printed electrolyte layers. Our ADP-LIBs demonstrate a great deal of promise as a realistic solution for powering the target applications on-demand with esthetic versatility, free-form factors, and competitive electrochemical performance.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHigh-performance, printable quasi-solid-state electrolytes toward all 3D direct ink writing of shape-versatile Li-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.ensm.2023.02.016-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy Storage Materials, v.57, pp.277 - 288-
dc.citation.titleEnergy Storage Materials-
dc.citation.volume57-
dc.citation.startPage277-
dc.citation.endPage288-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000945910500001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDIFFUSION-COEFFICIENT-
dc.subject.keywordPlusPOWER SOURCES-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordAuthorPrinted batteries-
dc.subject.keywordAuthorDirect ink writing-
dc.subject.keywordAuthorGel polymer electrolytes-
dc.subject.keywordAuthorPrinted Li-ion batteries-
dc.subject.keywordAuthorScalable energy storage devices-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE