Full metadata record

DC Field Value Language
dc.contributor.author이성재-
dc.contributor.author류보원-
dc.contributor.author김인호-
dc.contributor.author송용원-
dc.date.accessioned2024-01-12T02:31:51Z-
dc.date.available2024-01-12T02:31:51Z-
dc.date.created2022-12-09-
dc.date.issued2023-03-
dc.identifier.issn2365-709X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75786-
dc.description.abstractPractical gas sensors are indispensable for the healthy operation of cutting-edge hydrogen-based systems. An optical fiber-based hydrogen sensor incorporating a robust Fabry?Perot interferometric structure on a fiber tip with high sensitivity, selectivity, and reliability of operation and a micrometer-scale footprint is demonstrated. The hydrogen-sensitive volume expansion of palladium provides bi-metal operation with a silicon nitride mirror to tune the interferometer cavity and therefore the resonance modes by switching the mirror form factor from a flat to convex shape. It does not require any peripherals, including a power supply or data communication modules. In addition to fiber-inherent advantages, such as remote and multiplexed monitoring without electromagnetic field interference, the sensor guarantees temperature- and pressure-independent operation by adding a simple glass sub-cavity and microwindows in the mirror layer, respectively. Critically, the sensor highlights reliable operation in a liquid fluid (electrical transformer oil) to monitor hydrogen as its “damage marker” escaping from a mechanical shield or selective gas screen. The detection limit, sensitivity, and response time of the sensor under atmospheric conditions are 15 ppm, 29.6 nm/%, and 12.5 s, respectively. In addition, the unimpaired operation of the sensor in 60 °C transformer oil is verified experimentally.-
dc.languageEnglish-
dc.publisherJOHN WILEY & SONS INC-
dc.titleTemperature- and Ambient Pressure-Independent Sensing of Hydrogen in Fluids Using Cascaded Interferometers Incorporated in Optical Fibers-
dc.typeArticle-
dc.identifier.doi10.1002/admt.202201273-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials Technologies, v.8, no.6-
dc.citation.titleAdvanced Materials Technologies-
dc.citation.volume8-
dc.citation.number6-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000895802500001-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusPHASE-TRANSITIONS-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusPALLADIUM-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordPlusSTRATEGIES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorcascaded interferometer-
dc.subject.keywordAuthorhydrogen sensor-
dc.subject.keywordAuthoroptical sensor-
dc.subject.keywordAuthortemperature independent sensor-
dc.subject.keywordAuthortransformer oil-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE