Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Go Bong-
dc.contributor.authorPark, Jieun-
dc.contributor.authorHong, Seung ki-
dc.contributor.authorChoi, Jueun-
dc.contributor.authorSeo, Tae Hoon-
dc.contributor.authorKim, Hyungwoo-
dc.contributor.authorKim, Yoong Ahm-
dc.date.accessioned2024-01-12T02:32:35Z-
dc.date.available2024-01-12T02:32:35Z-
dc.date.created2023-01-19-
dc.date.issued2023-02-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75818-
dc.description.abstractDuring thermal treatment of carbon materials, unstable edge sites can easily convert to structurally stable loop structures. Hence, in the present work, carbon edges are physically passivated via high-temperature treatment in the presence of boron atoms to accelerate loop formation. The highly accelerated loop formation, along with stacking multi-layers at the carbon edges, is systematically investigated via high resolution transmission electron micro microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy and thermal gravimetric analysis (TGA). The boron-added carbon nanofibers (CNFs) at high temperature exhibit a greatly enhanced electrical conductivity due to the high mobility of boron atoms within the carbon structure. In particular, engineering of the loop structures on the carbon edges can alter the overall electrocatalytic activities of the carbon-based materials, as demonstrated in the reductive conversion of 4-nitrophenol (4-NP) and in the hydrogen evolution reaction (HER). This work not only suggests suitable methods for carbon edge passivation, but also opens up a route towards the advanced design of high-stability carbon materials in various fields.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleLoops at carbon edges: Boron-assisted passivation and tunable surface properties of carbon nanofibers-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2023.01.010-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon, v.204, pp.587 - 593-
dc.citation.titleCarbon-
dc.citation.volume204-
dc.citation.startPage587-
dc.citation.endPage593-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000925158100001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMETAL-FREE ELECTROCATALYSTS-
dc.subject.keywordPlusHYDROGEN EVOLUTION REACTION-
dc.subject.keywordPlusCATALYTIC GRAPHITIZATION-
dc.subject.keywordPlusDOPED GRAPHENE-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusATOMS-
dc.subject.keywordAuthorCarbon nanofibers-
dc.subject.keywordAuthorLoop formation-
dc.subject.keywordAuthorEdge passivation-
dc.subject.keywordAuthorCatalytic reduction reaction-
dc.subject.keywordAuthorHydrogen evolution reaction-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE