Full metadata record

DC Field Value Language
dc.contributor.authorLim, Seung Ji-
dc.contributor.authorSon, Moon-
dc.contributor.authorKi, Seo Jin-
dc.contributor.authorSuh, Sang-Ik-
dc.contributor.authorChung, Jaeshik-
dc.date.accessioned2024-01-12T02:32:44Z-
dc.date.available2024-01-12T02:32:44Z-
dc.date.created2022-12-29-
dc.date.issued2023-02-
dc.identifier.issn0960-8524-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75824-
dc.description.abstractRecent advances in machine learning (ML) have revolutionized an extensive range of research and industry fields by successfully addressing intricate problems that cannot be resolved with conventional approaches. However, low interpretability and incompatibility make it challenging to apply ML to complicated bioprocesses, which rely on the delicate metabolic interplay among living cells. This overview attempts to delineate ML applications to bioprocess from different perspectives, and their inherent limitations (i.e., uncertainties in prediction) were then discussed with unique attempts to supplement the ML models. A clear classification can be made depending on the purpose of the ML (supervised vs unsupervised) per application, as well as on their system boundaries (engineered vs natural). Although a limited number of hybrid approaches with meaningful outcomes (e.g., improved accuracy) are available, there is still a need to further enhance the interpretability, compatibility, and user-friendliness of ML models.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleOpportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future direction-
dc.typeArticle-
dc.identifier.doi10.1016/j.biortech.2022.128518-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBioresource Technology, v.370, pp.128518-
dc.citation.titleBioresource Technology-
dc.citation.volume370-
dc.citation.startPage128518-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000923269400001-
dc.relation.journalWebOfScienceCategoryAgricultural Engineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusFOOD WASTE-
dc.subject.keywordPlusANAEROBIC-DIGESTION-
dc.subject.keywordPlusINTERMITTENT AERATION-
dc.subject.keywordPlusMEMBRANE BIOREACTOR-
dc.subject.keywordPlusBLACK-BOX-
dc.subject.keywordPlusBIOAUGMENTATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusIRON-
dc.subject.keywordAuthorBioprocess-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorEngineered system-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorNatural system-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE