Full metadata record

DC Field Value Language
dc.contributor.authorSeok, Eunjeong-
dc.contributor.authorKim, Minjun-
dc.contributor.authorLee, Seunghak-
dc.contributor.authorPark, Jeongeun-
dc.contributor.authorKu, Minkyeong-
dc.contributor.authorLIM HYOJUN-
dc.contributor.authorLee, Yongheum-
dc.contributor.authorYu, Seungho-
dc.contributor.authorChoi, Wonchang-
dc.date.accessioned2024-01-12T02:32:58Z-
dc.date.available2024-01-12T02:32:58Z-
dc.date.created2022-11-23-
dc.date.issued2023-02-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75834-
dc.description.abstractOne of the most promising high voltage cathode materials for application in lithium ion batteries (LIBs), the 5 V spinel LiNi0.5Mn1.5O4, faces electrode/electrolyte decomposition at high voltage, rendering commercial application difficult. To overcome these obstacles, this study proposes a method for adsorbing vanadium anion complexes on the surface of Ni0.25Mn0.75(OH)2 using cationic polymers and calcination them with LiOH to form LiNi0.5Mn1.5O4 with a uniform nano-Li3VO4 coating layer. The uniform nano-Li3VO4 coating layer prepared by the above method promotes transfer of lithium ions and protects active material from electrolyte corrosion, thereby obtaining a particularly stable electrochemical performance under severe operating conditions such as high temperatures. Electrochemical tests show that the Li3VO4-coated LiNi0.5Mn1.5O4 demonstrates a high discharge capacity and at the cycling test after storage test at 60 °C, the Li3VO4-coated LiNi0.5Mn1.5O4 shows higher capacity retention than pristine LiNi0.5Mn1.5O4; this can be attributed to the coating that acts as a protective layer.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleElectrostatic interaction-driven inorganic coating layer toward improving battery performance for 5 V class high-voltage cathode in secondary batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2022.139737-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.453-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume453-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000891640900002-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusHIGH-ENERGY-DENSITY-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusLINI0.5MN1.5O4 CATHODE-
dc.subject.keywordPlusCOATED LINI0.5MN1.5O4-
dc.subject.keywordPlusSPINEL CATHODES-
dc.subject.keywordPlusMN3+ CONTENT-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusLIMN1.5NI0.5O4-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorLi3VO4-
dc.subject.keywordAuthorSurface-modification-
dc.subject.keywordAuthorElectrostatic interaction-
dc.subject.keywordAuthorLi-ion batteries-
dc.subject.keywordAuthorHigh voltage cathode-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE