Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seok, Eunjeong | - |
dc.contributor.author | Kim, Minjun | - |
dc.contributor.author | Lee, Seunghak | - |
dc.contributor.author | Park, Jeongeun | - |
dc.contributor.author | Ku, Minkyeong | - |
dc.contributor.author | LIM HYOJUN | - |
dc.contributor.author | Lee, Yongheum | - |
dc.contributor.author | Yu, Seungho | - |
dc.contributor.author | Choi, Wonchang | - |
dc.date.accessioned | 2024-01-12T02:32:58Z | - |
dc.date.available | 2024-01-12T02:32:58Z | - |
dc.date.created | 2022-11-23 | - |
dc.date.issued | 2023-02 | - |
dc.identifier.issn | 1385-8947 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/75834 | - |
dc.description.abstract | One of the most promising high voltage cathode materials for application in lithium ion batteries (LIBs), the 5 V spinel LiNi0.5Mn1.5O4, faces electrode/electrolyte decomposition at high voltage, rendering commercial application difficult. To overcome these obstacles, this study proposes a method for adsorbing vanadium anion complexes on the surface of Ni0.25Mn0.75(OH)2 using cationic polymers and calcination them with LiOH to form LiNi0.5Mn1.5O4 with a uniform nano-Li3VO4 coating layer. The uniform nano-Li3VO4 coating layer prepared by the above method promotes transfer of lithium ions and protects active material from electrolyte corrosion, thereby obtaining a particularly stable electrochemical performance under severe operating conditions such as high temperatures. Electrochemical tests show that the Li3VO4-coated LiNi0.5Mn1.5O4 demonstrates a high discharge capacity and at the cycling test after storage test at 60 °C, the Li3VO4-coated LiNi0.5Mn1.5O4 shows higher capacity retention than pristine LiNi0.5Mn1.5O4; this can be attributed to the coating that acts as a protective layer. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Electrostatic interaction-driven inorganic coating layer toward improving battery performance for 5 V class high-voltage cathode in secondary batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cej.2022.139737 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Chemical Engineering Journal, v.453 | - |
dc.citation.title | Chemical Engineering Journal | - |
dc.citation.volume | 453 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000891640900002 | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | LITHIUM-ION BATTERIES | - |
dc.subject.keywordPlus | HIGH-ENERGY-DENSITY | - |
dc.subject.keywordPlus | ELECTROCHEMICAL PROPERTIES | - |
dc.subject.keywordPlus | LINI0.5MN1.5O4 CATHODE | - |
dc.subject.keywordPlus | COATED LINI0.5MN1.5O4 | - |
dc.subject.keywordPlus | SPINEL CATHODES | - |
dc.subject.keywordPlus | MN3+ CONTENT | - |
dc.subject.keywordPlus | CAPACITY | - |
dc.subject.keywordPlus | LIMN1.5NI0.5O4 | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordAuthor | Li3VO4 | - |
dc.subject.keywordAuthor | Surface-modification | - |
dc.subject.keywordAuthor | Electrostatic interaction | - |
dc.subject.keywordAuthor | Li-ion batteries | - |
dc.subject.keywordAuthor | High voltage cathode | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.