Full metadata record

DC Field Value Language
dc.contributor.authorKim, Seo Gyun-
dc.contributor.authorHeo, So Jeong-
dc.contributor.authorKim Sung Yong-
dc.contributor.authorKim, Junghwan-
dc.contributor.authorSangone, Kim-
dc.contributor.authorLee, Dongju-
dc.contributor.authorLee Suhun-
dc.contributor.authorKim, Jung won-
dc.contributor.authorYOU, NAM HO-
dc.contributor.authorKim, Min kook-
dc.contributor.authorKim, Hwan Chul-
dc.contributor.authorChae, Han Gi-
dc.contributor.authorKu, Bon-Cheol-
dc.date.accessioned2024-01-12T02:34:46Z-
dc.date.available2024-01-12T02:34:46Z-
dc.date.created2022-10-15-
dc.date.issued2022-12-
dc.identifier.issn1359-8368-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75911-
dc.description.abstractDevelopment of carbon fibers (CFs) with high strength and high modulus for structural applications in CF reinforced polymer (CFRP) industry has been a challenge. Herein, we propose a method for manufacturing highly oriented polymer?carbon nanotube (CNT) composite fibers having high strength (4.8 ± 0.2 GPa), modulus (390 ± 48 GPa), and electrical conductivity (5.75 ± 0.84 MS m-1) by a liquid crystalline wet-spinning process. The use of chlorosulfonic acid (CSA) as a solvent for CNTs and polyimide (PI) promotes dispersion and enables the production of high-performance composite fibers. In addition, the functional groups of PI in composite fibers improve the interfacial shear strength with epoxy resin without sizing additives by 72% compared to that of CNT fibers. Carbonization and graphitization of the composite fibers with an optimal ratio of PI (30%) and CNT cause significant improvement in their mechanical (tensile strength; 6.21 ± 0.3 GPa and modulus; 701 ± 47 GPa) and thermal properties (496 ± 38 W m?? 1 K?? 1) by reducing voids and improving orientation. We believe that the polymer?CNT composites and their CFs with high strength and high modulus would be the nextgeneration CFs for aerospace and defense industry.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleUltrahigh strength and modulus of polyimide-carbon nanotube based carbon and graphitic fibers with superior electrical and thermal conductivities for advanced composite applications-
dc.typeArticle-
dc.identifier.doi10.1016/j.compositesb.2022.110342-
dc.description.journalClass1-
dc.identifier.bibliographicCitationComposites Part B: Engineering, v.247-
dc.citation.titleComposites Part B: Engineering-
dc.citation.volume247-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000878191300003-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusSTRESS TRANSFER-
dc.subject.keywordPlusSTABILIZATION-
dc.subject.keywordPlusCARBONIZATION-
dc.subject.keywordPlusPROPERTY-
dc.subject.keywordAuthorCarbon nanotubes-
dc.subject.keywordAuthorPolyimide-
dc.subject.keywordAuthorCarbon fibers-
dc.subject.keywordAuthorCarbon-fiber-reinforced polymer composites-
dc.subject.keywordAuthorMechanical properties-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE