Full metadata record

DC Field Value Language
dc.contributor.authorArash Badakhsh-
dc.contributor.authorSong Dong Hyun-
dc.contributor.authorSeongeun Moon-
dc.contributor.authorJeong, Hyang soo-
dc.contributor.authorSohn, Hyun tae-
dc.contributor.authorSuk Woo Nam-
dc.contributor.authorSoon Kim, Pyung-
dc.contributor.authorHui Seo, Ji-
dc.contributor.authorKim, Yongwoo-
dc.contributor.authorLee, Jaeyong-
dc.contributor.authorWoo Choung, Jin-
dc.contributor.authorKim, Yong min-
dc.date.accessioned2024-01-12T02:34:55Z-
dc.date.available2024-01-12T02:34:55Z-
dc.date.created2022-07-07-
dc.date.issued2022-12-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75917-
dc.description.abstractWe introduce a thermally self-sustained reactor concept highly integrated with a heat source to produce hydrogen (H-2) stored in methylcyclohexane (MCH), the liquid organic hydrogen carrier (LOHC). This work has a great potential to promote the use of LOHC for COx-free H-2 production for on-board or mobile applications. To this end, the heat-pipe dehydrogenator, an H-2 burner, and a thermal management module are developed. We initially perform a numerical simulation to optimize reactor wall materials and configuration and experimentally test them to reveal the feasibility of such a highly integrated system to maintain uniform reaction temperature at 320 - 360 degrees C, optimal for MCH dehydrogenation. In the proposed design, the heat required for the reaction is provided by the combustion of a part of released H-2, and transferred via a gas-liquid organic phase-change material (PCM). In the as-developed H-2 generator with 50.4 NLH2/h (equivalent to 138.5 WLHV-basis), we achieve a high reforming efficiency of 80% with an MCH conversion of > 99.7%. We expect the as-developed system to be a stepping stone to expanding the use of LOHC in versatile applications requiring carbon-free H-2 storage and production after further engineering efforts to enhance heat recovery and thermal circulation.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleCOX-free LOHC dehydrogenation in a heatpipe reformer highly integrated with a hydrogen burner-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2022.137679-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.449, no.1-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume449-
dc.citation.number1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000823033400002-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMICROCHANNEL REACTOR-
dc.subject.keywordPlusAMMONIA-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusENERGY-
dc.subject.keywordAuthorLOHC dehydrogenation-
dc.subject.keywordAuthorHydrogen combustion-
dc.subject.keywordAuthorAutothermal reactor design-
dc.subject.keywordAuthorPhase-change material-
dc.subject.keywordAuthorHeatpipe reformer-
dc.subject.keywordAuthorHeat transfer-
dc.subject.keywordAuthorThermochemistry-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE