Full metadata record

DC Field Value Language
dc.contributor.authorJin Haneul-
dc.contributor.authorHee Soo Kim-
dc.contributor.authorLee, Chi Ho-
dc.contributor.authorHong, Yongju-
dc.contributor.authorCHOI, JIHYUN-
dc.contributor.authorBaik, Hionsuck-
dc.contributor.authorLee, Sang Uck-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorLee, Kwangyeol-
dc.contributor.authorPark, Hyun S.-
dc.date.accessioned2024-01-12T02:35:35Z-
dc.date.available2024-01-12T02:35:35Z-
dc.date.created2022-11-10-
dc.date.issued2022-11-
dc.identifier.issn2155-5435-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75946-
dc.description.abstractUnderstanding catalytic-conversion determinants will blueprint an efficient electrocatalyst design for electrochemical nitrogen reduction. In metal chalcogenide-based catalysts, metalsite nitrogen adsorption initiates nitrogen fixation, and successive hydrogen supply from nearby chalcogen sites hydrogenates the nitrogen to ammonia. However, surface geometry-dependent reaction kinetics are rarely studied because the reaction is very fast. Here, we investigate the relationship between catalyst geometrical features and their electrochemical nitrogen reduction kinetics using surface atomic geometry-regulated copper sulfide (Cu1.81S) nanocatalysts with exposed (100)- and (010)-type facets for flat and zigzag planes, respectively. The exposed facet densities of the nanocatalysts are varied via their aspect ratios. Nanocrystals with highly exposed (010)-type surfaces exhibit the best nitrogen reduction kinetics. Density functional theory calculation reveals that the protruded Cu and S atomic arrangement on the zigzag (010)-type surface promotes N-2 adsorption and facilitates proton transfer from near the S site to *N-2 at the Cu site, thus fast- forwarding electrochemical nitrogen reduction.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleDirecting the Surface Atomic Geometry on Copper Sulfide for Enhanced Electrochemical Nitrogen Reduction-
dc.typeArticle-
dc.identifier.doi10.1021/acscatal.2c03680-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Catalysis, v.12, no.21, pp.13638 - 13648-
dc.citation.titleACS Catalysis-
dc.citation.volume12-
dc.citation.number21-
dc.citation.startPage13638-
dc.citation.endPage13648-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000877880400001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusINITIO MOLECULAR-DYNAMICS-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusLMM AUGER-SPECTRA-
dc.subject.keywordPlusLOW-TEMPERATURE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusNH3-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusINSIGHTS-
dc.subject.keywordPlusPOINTS-
dc.subject.keywordAuthormetal chalcogenide-based catalyst-
dc.subject.keywordAuthorsurface atomic geometry-
dc.subject.keywordAuthorelectrochemical nitrogen reduction-
dc.subject.keywordAuthorcatalytic conversion-
dc.subject.keywordAuthorammonia production-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE