Full metadata record

DC Field Value Language
dc.contributor.authorCho, Jung Min-
dc.contributor.authorLee, Hak Joo-
dc.contributor.authorKo, Young Jin-
dc.contributor.authorCHOI, HEON JIN-
dc.contributor.authorBaik, Young Joon-
dc.contributor.authorHwang, Gyu Weon-
dc.contributor.authorPARK, JONG KEUK-
dc.contributor.authorKwak, Joon Young-
dc.contributor.authorKim, Jae wook-
dc.contributor.authorPark, Jongkil-
dc.contributor.authorJeong, Yeon Joo-
dc.contributor.authorKim, In ho-
dc.contributor.authorLEE, KYEONG SEOK-
dc.contributor.authorLee, Wook Seong-
dc.date.accessioned2024-01-12T02:35:58Z-
dc.date.available2024-01-12T02:35:58Z-
dc.date.created2022-10-13-
dc.date.issued2022-11-
dc.identifier.issn2468-0230-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75963-
dc.description.abstractSynthesis of the porous chemical vapor deposition (CVD) diamond layer, which might enable many noble applications, usually employed the template growth or post-processing, which accompanied the undesirable complexity and cost issues. In a small number of the porous diamond layer synthesis efforts, majority of them employed the plasma-assisted CVD (PA-CVD), while the hot-filament CVD (HF-CVD) was well known for its outstanding scalability and cost-effectiveness. Here we demonstrate a post-processing/template-free approach for the porous diamond layer synthesis by HF-CVD. Intriguingly, we found that the seeding the substrate by detonation nanodiamond (DND) and the relatively low substrate temperature were key enabling factors. The consolidated layer was consisted of quasi-spherical nanodiamond particles. Such observations suggested a precipitation-relevant growth mechanism, which we disproved here, and we clarified an alternative bottom-up growth mechanism. We also demonstrated a preliminary result of applying the porous diamond layer as a waveguide in the attenuated-total-reflection (ATR)-type waveguide mode resonance sensor.-
dc.languageEnglish-
dc.publisherElsevier-
dc.titleBottom-up evolution of consolidated porous diamond layer by hot-filament-CVD-
dc.typeArticle-
dc.identifier.doi10.1016/j.surfin.2022.102362-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSurfaces and Interfaces, v.34-
dc.citation.titleSurfaces and Interfaces-
dc.citation.volume34-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000928474900003-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordAuthorCVD diamond-
dc.subject.keywordAuthorPorous diamond layer-
dc.subject.keywordAuthorNucleation/growth mechanism-
dc.subject.keywordAuthorOne-batch synthesis-
dc.subject.keywordAuthorHot-filament CVD-
dc.subject.keywordAuthorOptical waveguide-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE