Full metadata record

DC Field Value Language
dc.contributor.authorGim, Gundu-
dc.contributor.authorHaider, Zeeshan-
dc.contributor.authorSuh, Sae-In-
dc.contributor.authorAhn, Yong-Yoon-
dc.contributor.authorKim, Kitae-
dc.contributor.authorKim, Eun Ju-
dc.contributor.authorLee, Hongshin-
dc.contributor.authorKim, Hyoung-il-
dc.contributor.authorLee, Jaesang-
dc.date.accessioned2024-01-12T02:36:13Z-
dc.date.available2024-01-12T02:36:13Z-
dc.date.created2022-06-17-
dc.date.issued2022-11-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75974-
dc.description.abstractThis study presents the first instance of the application of hydrogenated nanodiamonds (H-NDs) for persulfate activation and the associated organic degradation. Surface hydrogenation at 600 degrees C, confirmed by the increased surface density of the C-H moiety in XPS and FT-IR spectra, produced H-NDs that outperformed graphitized NDs (prepared via annealing at 1000 degrees C) in terms of organic degradation and persulfate utilization efficiency. Hydrogenation improved the electrical conductivity of NDs; however, it was not accompanied by an increase in the sp(2) carbon content - in contrast to energy-intensive ND graphitization - resulting from sp(3)-to-sp(2) carbon transformation. In addition to the enhanced electron-transfer mediating activity, evidenced by the negative shift of the open circuit potential and current generation, isothermal titration calorimetry measurements indicated a significantly higher binding affinity of H-ND toward persulfate compared with that of graphitized ND. Multiple empirical results confirmed the progress of electron-transfer mediation as a major activation pathway.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleLow-temperature hydrogenation of nanodiamond as a strategy to fabricate sp3-hybridized nanocarbon as a high-performance persulfate activator-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2022.121589-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Catalysis B: Environmental, v.316-
dc.citation.titleApplied Catalysis B: Environmental-
dc.citation.volume316-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000815964800006-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSINGLET OXYGEN-
dc.subject.keywordPlusHETEROGENEOUS CATALYSIS-
dc.subject.keywordPlusORGANIC CONTAMINANTS-
dc.subject.keywordPlusRATE CONSTANTS-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusDIAMOND-
dc.subject.keywordAuthorSurface hydrogenation-
dc.subject.keywordAuthorNanodiamond-
dc.subject.keywordAuthorNon-radical persulfate activation-
dc.subject.keywordAuthorElectron-transfer mediation-
dc.subject.keywordAuthorSurface binding affinity-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE