Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jung Moo-
dc.contributor.authorGadhe Changdev Gorakshnath-
dc.contributor.authorKang, Hyunji-
dc.contributor.authorPae, Ae Nim-
dc.contributor.authorLee, ChangJoon Justin-
dc.date.accessioned2024-01-12T02:36:19Z-
dc.date.available2024-01-12T02:36:19Z-
dc.date.created2022-11-22-
dc.date.issued2022-10-
dc.identifier.issn1226-2560-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75977-
dc.description.abstractBestrophin-1 (Best1) is a calcium (Ca2+)-activated chloride (Cl-) channel which has a phylogenetically conserved channel structure with an aperture and neck in the ion-conducting pathway. Mammalian mouse Best1 (mBest1) has been known to have a permeability for large organic anions including gluconate, glutamate, and D-serine, in addition to several small monovalent anions, such as Cl?, bromine (Br-), iodine (I-), and thiocyanate (SCN-). However, it is still unclear whether non-mammalian Best1 has a glutamate permeability through the ion-conducting pathway. Here, we report that chicken Best1 (cBest1) is permeable to glutamate in a Ca2+-dependent manner. The molecular docking and molecular dynamics simulation showed a glutamate binding at the aperture and neck of cBest1 and a glutamate permeation through the ion-conducting pore, respectively. Moreover, through electrophysiological recordings, we calculated the permeability ratio of glutamate to Cl- (PGlutamate/PCl) as 0.28 based on the reversal potential shift by ion substitution from Cl- to glutamate in the internal solution. Finally, we directly detected the Ca2+-dependent glutamate release through cBest1 using the ultrasensitive two-cell sniffer patch technique. Our results propose that Best1 homologs from non-mammalian (cBest1) to mammalian (mBest1) have a conserved permeability for glutamate.-
dc.languageEnglish-
dc.publisher한국뇌신경과학회-
dc.titleGlutamate Permeability of Chicken Best1-
dc.typeArticle-
dc.identifier.doi10.5607/en22038-
dc.description.journalClass1-
dc.identifier.bibliographicCitationExperimental Neurobiology, v.31, no.5, pp.277 - 288-
dc.citation.titleExperimental Neurobiology-
dc.citation.volume31-
dc.citation.number5-
dc.citation.startPage277-
dc.citation.endPage288-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.wosid000903744000001-
dc.relation.journalWebOfScienceCategoryMedicine, Research & Experimental-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalResearchAreaResearch & Experimental Medicine-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.type.docTypeArticle-
dc.subject.keywordPlusCL-CHANNELS-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusBESTROPHIN-
dc.subject.keywordPlusRELEASE-
dc.subject.keywordPlusGENE-
dc.subject.keywordPlusSIMULATIONS-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusVMD2-
dc.subject.keywordAuthorChicken Best1-
dc.subject.keywordAuthorGlutamate permeability-
dc.subject.keywordAuthorMolecular docking simulation-
dc.subject.keywordAuthorMolecular dynamics simulation-
dc.subject.keywordAuthorWhole-cell patch-clamp recording-
dc.subject.keywordAuthorTwo-cell sniffer patch-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE