Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seongkook Oh | - |
dc.contributor.author | Oh Minjun | - |
dc.contributor.author | 홍종섭 | - |
dc.contributor.author | Yoon, Kyung Joong | - |
dc.contributor.author | Ji, Ho-Il | - |
dc.contributor.author | Lee, Jong Ho | - |
dc.contributor.author | Kang, Hyungmook | - |
dc.contributor.author | Son, Ji-Won | - |
dc.contributor.author | Yang, Sungeun | - |
dc.date.accessioned | 2024-01-12T02:37:22Z | - |
dc.date.available | 2024-01-12T02:37:22Z | - |
dc.date.created | 2022-09-21 | - |
dc.date.issued | 2022-09 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/76021 | - |
dc.description.abstract | Ammonia is a promising carbon-free hydrogen carrier. Owing to their nickel-rich anodes and high operating temperatures, solid oxide fuel cells (SOFCs) can directly utilize NH3 fuel-direct-ammonia SOFCs (DA-SOFCs). Lowering the operating temperature can diversify application areas of DA-SOFCs. We tested direct-ammonia operation using two types of thin-film SOFCs (TF-SOFCs) under 500 to 650 degrees C and compared these with a conventional SOFC. The TF-SOFC with a nickel oxide gadolinium-doped ceria anode achieved a peak power density of 1330 mW cm(-2) (NH3 fuel under 650 degrees C), which is the best performance reported to date. However, the performance difference between the NH3 and H-2 operations was significant. Electrochemical impedance analyses, ammonia conversion quantification, and two-dimensional multi-physics modeling suggested that reduced ammonia conversion at low temperatures is the main cause of the performance gap. A comparative study with previously reported DA-SOFCs clarified that incorporating a more active ammonia decomposition catalyst will further improve low-temperature DA-SOFCs. | - |
dc.language | English | - |
dc.publisher | CELL PRESS | - |
dc.title | A comprehensive investigation of direct ammonia-fueled thin-film solid-oxide fuel cells: Performance, limitation, and prospects | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.isci.2022.105009 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | iScience, v.25, no.9 | - |
dc.citation.title | iScience | - |
dc.citation.volume | 25 | - |
dc.citation.number | 9 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000860969300004 | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | CERMET ANODES | - |
dc.subject.keywordPlus | HYDROGEN | - |
dc.subject.keywordPlus | FUNDAMENTALS | - |
dc.subject.keywordPlus | TECHNOLOGY | - |
dc.subject.keywordPlus | GENERATION | - |
dc.subject.keywordPlus | DEPOSITION | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordPlus | CATALYST | - |
dc.subject.keywordPlus | CATHODE | - |
dc.subject.keywordPlus | CARRIER | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.