Full metadata record

DC Field Value Language
dc.contributor.author류준규-
dc.contributor.author조정희-
dc.contributor.author김재욱-
dc.contributor.author정연주-
dc.contributor.author박성식-
dc.date.accessioned2024-01-12T02:46:05Z-
dc.date.available2024-01-12T02:46:05Z-
dc.date.created2023-10-30-
dc.date.issued2023-06-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76433-
dc.identifier.urihttps://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11522599-
dc.description.abstractThis paper presents analyses of the performance of three different search algorithms, including random, greedy, and Bayesian, in the neural architecture search (NAS). To conduct this study, we used Autokeras, a keras-based AutoML framework, to search architectures of deep neural networks (DNNs) and deep spiking neural networks (SNNs). We evaluated the performance of NAS algorithms on searching deep SNNs and DNNs on CIFAR-10 datasets. Our experimental results showed that the Bayesian algorithm outperformed the other two in terms of accuracy, while the greedy algorithm achieved the best accuracy on DNNs. Our findings suggest that the Bayesian algorithm is promising in NAS for both DNNs and SNNs.-
dc.languageKorean-
dc.publisher대한전자공학회-
dc.title깊은 스파이킹 신경망을 위한 뉴럴 아키텍처 탐색 알고리즘 성능 분석-
dc.typeConference-
dc.description.journalClass2-
dc.identifier.bibliographicCitation2023년도 대한전자공학회 하계종합학술대회-
dc.citation.title2023년도 대한전자공학회 하계종합학술대회-
dc.citation.conferencePlaceKO-
dc.citation.conferencePlace제주도-
dc.citation.conferenceDate2023-06-28-
dc.relation.isPartOf2023년도 대한전자공학회 하계학술대회 논문집-
Appears in Collections:
KIST Conference Paper > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE