Full metadata record

DC Field Value Language
dc.contributor.authorHana, Park-
dc.contributor.authorYoeseph, Cho-
dc.contributor.authorChangmin, Sung-
dc.contributor.authorHophil, Min-
dc.contributor.authorKang Mi, Lee-
dc.contributor.authorYong-Sun, Bahn-
dc.contributor.authorJunghyun, Son-
dc.date.accessioned2024-01-12T02:47:09Z-
dc.date.available2024-01-12T02:47:09Z-
dc.date.created2023-03-25-
dc.date.issued2023-02-27-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76484-
dc.languageEnglish-
dc.publisherManfred Donike Institute-
dc.titleEnhancement of anti-doping strategy using artificial intelligence (AI) : A study on Improving the Accuracy and Efficiency of Detecting Performance-Enhancing Drugs in Athletics as a Proposed Next-Generation Doping Diagnosis Strategy-
dc.typeConference-
dc.description.journalClass1-
dc.identifier.bibliographicCitationManfred Donike Workshop, 41st Cologne Workshop on Doping Analysis-
dc.citation.titleManfred Donike Workshop, 41st Cologne Workshop on Doping Analysis-
dc.citation.conferencePlaceGE-
dc.citation.conferencePlaceCologne-
dc.citation.conferenceDate2023-02-26-
dc.relation.isPartOfManfred Donike Workshop-
Appears in Collections:
KIST Conference Paper > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE