Full metadata record

DC Field Value Language
dc.contributor.authorLee, Minhyeok-
dc.contributor.authorPark, Chaewon-
dc.contributor.authorCho, Suhwan-
dc.contributor.authorLee, Sangyoun-
dc.date.accessioned2024-01-12T02:49:34Z-
dc.date.available2024-01-12T02:49:34Z-
dc.date.created2023-10-29-
dc.date.issued2022-10-
dc.identifier.issn1522-4880-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76605-
dc.description.abstractCo-saliency detection is a task to segment the occurring salient objects in a group of images. The biggest challenges are distracting objects in the background and ambiguity between the foreground and background. To handle these issues, we propose a novel superpixel group-correlation network (SGCN) architecture that uses a superpixel algorithm to obtain various component features from a group of images and creates a group-correlation matrix to detect the common components of those images. In this way, non-common objects can be effectively excluded from consideration, enabling a clear distinction between foreground and background. Our method outperforms current state-of-the-art methods on three popular benchmark datasets for co-saliency detection, and our extensive experiments thoroughly validate our claimed contributions.-
dc.languageEnglish-
dc.publisherIEEE-
dc.titleSuperpixel Group-Correlation Network for Co-Saliency Detection-
dc.typeConference-
dc.identifier.doi10.1109/ICIP46576.2022.9897408-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE International Conference on Image Processing (ICIP), pp.806 - 810-
dc.citation.titleIEEE International Conference on Image Processing (ICIP)-
dc.citation.startPage806-
dc.citation.endPage810-
dc.citation.conferencePlaceUS-
dc.citation.conferencePlaceBordeaux, FRANCE-
dc.citation.conferenceDate2022-10-16-
dc.relation.isPartOf2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP-
dc.identifier.wosid001058109500157-
dc.identifier.scopusid2-s2.0-85146705041-
Appears in Collections:
KIST Conference Paper > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE