Full metadata record

DC Field Value Language
dc.contributor.authorChae, Yu-Jung-
dc.contributor.authorNam, Changjoo-
dc.contributor.authorYang, Daseul-
dc.contributor.authorSin, HunSeob-
dc.contributor.author김창환-
dc.contributor.author박성기-
dc.date.accessioned2024-01-12T03:00:20Z-
dc.date.available2024-01-12T03:00:20Z-
dc.date.created2022-06-07-
dc.date.issued2022-09-
dc.identifier.issn0921-8890-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76625-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0921889022000884-
dc.description.abstractWe propose a methodology for a robot to automatically generate felicitous co-speech gestures corresponding to robot utterances. First, the proposed method determines the part of a given robot utterance, where the robot makes a gesture by doing a morphemic analysis on the sentence of utterance. The part is herein called an expression unit. The method then predicts a gesture type to characterize the expression unit in the sense of conveying thoughts and feelings. The gesture type is selected from the four types of iconic, metaphoric, beat, and deictic categorized by McNeill by performing morphemic analysis on the sentence. A gesture proper to the gesture type is retrieved from a database of motion primitives that are built with predefined a limited number of words. For retrieving, Word2Vec is applied to estimate word similarity between the predefined words in the database and words in the expression unit such that the method can deal with an arbitrary sentence and generate an appropriate gesture for similar words in meaning.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleGeneration of co-speech gestures of robot based on morphemic analysis-
dc.typeArticle-
dc.identifier.doi10.1016/j.robot.2022.104154-
dc.description.journalClass1-
dc.identifier.bibliographicCitationRobotics and Autonomous Systems, v.155-
dc.citation.titleRobotics and Autonomous Systems-
dc.citation.volume155-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000833416900004-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryRobotics-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaRobotics-
dc.type.docTypeArticle-
dc.subject.keywordAuthorHuman-robot interaction-
dc.subject.keywordAuthorCo-speech gesture generation-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorMorphemic analysis-
dc.subject.keywordAuthorWord embedding-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE