Full metadata record

DC Field Value Language
dc.contributor.authorSoon Ho Kim-
dc.contributor.authorWoo, Junhyuk-
dc.contributor.authorChoi, Kiri-
dc.contributor.authorChoi, MooYoung-
dc.contributor.authorHan, Kyung reem-
dc.date.accessioned2024-01-12T03:00:22Z-
dc.date.available2024-01-12T03:00:22Z-
dc.date.created2022-06-03-
dc.date.issued2022-09-
dc.identifier.issn0899-7667-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76626-
dc.description.abstractInformation processing in artificial neural networks is largely dependent on the nature of neuron models. While commonly used models are designed for linear integration of synaptic inputs, accumulating experimental evidence suggests that biological neurons are capable of nonlinear computations for many converging synaptic inputs via homo- and heterosynaptic mechanisms. This nonlinear neuronal computation may play an important role in complex information processing at the neural circuit level. Here we characterize the dynamics and coding properties of neuron models on synaptic transmissions delivered from two hidden states. The neuronal information processing is influenced by the cooperative and competitive interactions among synapses and the coherence of the hidden states. Furthermore, we demonstrate that neuronal information processing under two-input synaptic transmission can be mapped to linearly nonseparable XOR as well as basic AND/OR operations. In particular, the mixtures of linear and nonlinear neuron models outperform the fashion-MNIST test compared to the neural networks consisting of only one type. This study provides a computational framework for assessing information processing of neuron and synapse models that may be beneficial for the design of brain-inspired artificial intelligence algorithms and neuromorphic systems.-
dc.languageEnglish-
dc.publisherMIT Press-
dc.titleNeural information processing and computations of two-input synapses-
dc.typeArticle-
dc.identifier.doi10.1162/neco_a_01534-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNeural Computation, v.34, no.10, pp.2102 - 2131-
dc.citation.titleNeural Computation-
dc.citation.volume34-
dc.citation.number10-
dc.citation.startPage2102-
dc.citation.endPage2131-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000852806200005-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.type.docTypeArticle-
dc.subject.keywordPlusACTION-POTENTIALS-
dc.subject.keywordPlusLOGIC OPERATIONS-
dc.subject.keywordPlusPYRAMIDAL NEURON-
dc.subject.keywordPlusSINGLE NEURONS-
dc.subject.keywordPlusLOCAL CIRCUITS-
dc.subject.keywordPlusBCM THEORY-
dc.subject.keywordPlusIN-VIVO-
dc.subject.keywordPlusPLASTICITY-
dc.subject.keywordPlusPROPAGATION-
dc.subject.keywordPlusDENDRITES-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE