Full metadata record

DC Field Value Language
dc.contributor.authorLee,HyunJeong-
dc.contributor.authorMoon, Jong-Seok-
dc.contributor.authorByeon, Young Woon-
dc.contributor.authorYoon, Woo Young-
dc.contributor.authorKim, Hong-Kyu-
dc.contributor.authorAhn, Jae Pyoung-
dc.date.accessioned2024-01-12T03:01:05Z-
dc.date.available2024-01-12T03:01:05Z-
dc.date.created2022-08-01-
dc.date.issued2022-08-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76650-
dc.description.abstractLithiation kinetics of a Si-C composite anode for high-capacity lithium (Li)-ion batteries were investigated through in situ lithiation and electrochemical C-V measurements using a focused ion beam (FIB). Here, we found in the lithiation procedure that Li migrates sequentially into carbon (C), nanopores, and silicon (Si) in the Si-C composite. In the first lithiation step, Li was intercalated inside C particles while spreading over the surface of the C particles. The second lithiation process occurred through the filling of nanopores existing between electrode particles that consisted of the Si-C composite. The nanopores acted as a Li reservoir during the pore-filling process. Finally, the Si particles were lithiated with a volume expansion of similar to 70%, corresponding to a 300% volume expansion of 25 wt % Si particles included in the composite anode. The nanopores did not accommodate a large volume expansion of Si particles, because pore-filling lithiation occurred before the Si lithiation in the charging process. We suggest a design rule related to the role of the nanopores of the Si-C composite anode in LIB systems.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleLithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.2c01022-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters, v.7, no.8, pp.2469 - 2476-
dc.citation.titleACS Energy Letters-
dc.citation.volume7-
dc.citation.number8-
dc.citation.startPage2469-
dc.citation.endPage2476-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000862464500001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusGENERALIZED GRADIENT APPROXIMATION-
dc.subject.keywordPlusTRANSMISSION ELECTRON-MICROSCOPY-
dc.subject.keywordPlusHIGH-CAPACITY ELECTRODE-
dc.subject.keywordPlusLITHIUM BATTERY ANODES-
dc.subject.keywordPlusLI-ION BATTERIES-
dc.subject.keywordPlusAMORPHOUS-SILICON-
dc.subject.keywordPlusSILICON/GRAPHITE/CARBON NANOTUBES-
dc.subject.keywordPlusELECTROCHEMICAL LITHIATION-
dc.subject.keywordPlusCARBON NANOCOMPOSITES-
dc.subject.keywordPlusDEPENDENT FRACTURE-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE