Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee,HyunJeong | - |
dc.contributor.author | Moon, Jong-Seok | - |
dc.contributor.author | Byeon, Young Woon | - |
dc.contributor.author | Yoon, Woo Young | - |
dc.contributor.author | Kim, Hong-Kyu | - |
dc.contributor.author | Ahn, Jae Pyoung | - |
dc.date.accessioned | 2024-01-12T03:01:05Z | - |
dc.date.available | 2024-01-12T03:01:05Z | - |
dc.date.created | 2022-08-01 | - |
dc.date.issued | 2022-08 | - |
dc.identifier.issn | 2380-8195 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/76650 | - |
dc.description.abstract | Lithiation kinetics of a Si-C composite anode for high-capacity lithium (Li)-ion batteries were investigated through in situ lithiation and electrochemical C-V measurements using a focused ion beam (FIB). Here, we found in the lithiation procedure that Li migrates sequentially into carbon (C), nanopores, and silicon (Si) in the Si-C composite. In the first lithiation step, Li was intercalated inside C particles while spreading over the surface of the C particles. The second lithiation process occurred through the filling of nanopores existing between electrode particles that consisted of the Si-C composite. The nanopores acted as a Li reservoir during the pore-filling process. Finally, the Si particles were lithiated with a volume expansion of similar to 70%, corresponding to a 300% volume expansion of 25 wt % Si particles included in the composite anode. The nanopores did not accommodate a large volume expansion of Si particles, because pore-filling lithiation occurred before the Si lithiation in the charging process. We suggest a design rule related to the role of the nanopores of the Si-C composite anode in LIB systems. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Lithiation Pathway Mechanism of Si-C Composite Anode Revealed by the Role of Nanopore using In Situ Lithiation | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsenergylett.2c01022 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Energy Letters, v.7, no.8, pp.2469 - 2476 | - |
dc.citation.title | ACS Energy Letters | - |
dc.citation.volume | 7 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 2469 | - |
dc.citation.endPage | 2476 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000862464500001 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Electrochemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | GENERALIZED GRADIENT APPROXIMATION | - |
dc.subject.keywordPlus | TRANSMISSION ELECTRON-MICROSCOPY | - |
dc.subject.keywordPlus | HIGH-CAPACITY ELECTRODE | - |
dc.subject.keywordPlus | LITHIUM BATTERY ANODES | - |
dc.subject.keywordPlus | LI-ION BATTERIES | - |
dc.subject.keywordPlus | AMORPHOUS-SILICON | - |
dc.subject.keywordPlus | SILICON/GRAPHITE/CARBON NANOTUBES | - |
dc.subject.keywordPlus | ELECTROCHEMICAL LITHIATION | - |
dc.subject.keywordPlus | CARBON NANOCOMPOSITES | - |
dc.subject.keywordPlus | DEPENDENT FRACTURE | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.