Full metadata record

DC Field Value Language
dc.contributor.authorKANDULA, SYAM-
dc.contributor.authorYoun, Beom Sik-
dc.contributor.authorCho, Jinhan-
dc.contributor.authorLim, Hyung-Kyu-
dc.contributor.authorSon, Jeong Gon-
dc.date.accessioned2024-01-12T03:02:00Z-
dc.date.available2024-01-12T03:02:00Z-
dc.date.created2022-03-19-
dc.date.issued2022-07-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76688-
dc.description.abstractDeveloping effective anode materials for sodium-ion batteries (SIBs) remains challenging. Although FeS2 has a high theoretical capacity, it suffers from significant volume changes during charge/discharge and forms soluble polysulfides at lower potentials (below 0.8 V vs. Na/Na+), making practical application difficult. We have developed an effective strategy to synthesize N-doped carbon-coated FeS2 nanorattles encapsulated in N/S dual-doped graphene/single-walled carbon nanotubes (G/SWCNTs) via hydrothermal vulcanization (FSCGS). This approach enabled the simultaneous formation of nanorattle structures and N/S dual-element doping into the G/SWCNT network. Using the FSCGS sample as an anode for SIBs, a remarkable specific capacity of 1,190 mAh g?1 at a current density of 0.1 A g?1 was achieved, with an excellent rate capability of 476 mAh g?1 at 10.0 A g?1. Moreover, it exhibited superior cyclic stability, with a capacity retention of 91.3% at 0.5 A g?1 after 200 cycles. First-principles calculations revealed that pyridinic-N/S doping of the basal graphene network improved Na+ reduction, resulting in enhanced electrochemical performance. The effective electrochemical functioning of the FSCGS anode material was attributed to an optimized hierarchical architecture and the excellent electrical conductivity/electrochemical activity provided by the dual carbon entities (N-doped carbon and N/S dual-doped G/SWCNT network). ? 2022 The Authors-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleFeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2022.135678-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.439, pp.135678-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume439-
dc.citation.startPage135678-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000783412200003-
dc.identifier.scopusid2-s2.0-85126120774-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusPYRITE FES2 NANOCRYSTALS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusLIFE-
dc.subject.keywordAuthorAnode material-
dc.subject.keywordAuthorEnergy storage-
dc.subject.keywordAuthorGraphene/CNT-
dc.subject.keywordAuthorIron sulfide (FeS2)-
dc.subject.keywordAuthorSodium-ion batteries-
dc.subject.keywordAuthorSpecific capacity-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE